

SW Test Workshop Semiconductor Wafer Test Workshop

Multi-site probing of magnetic sensors at 175 deg C

Geert Gouwy, Melexis

Joe Mai, JEM

June 5-8, 2016

Agenda

- Melexis company overview
- Basics: triaxis[®]
- Test requirements, challenges & test cell considerations
- Concept & system setup
- Flowchart probe card evaluation
- Evaluation criteria & achievements
- Future work

Melexis supplies worldwide average 7 ICs / car

Sensing Speed Position Current Pressure Temperature Light Image

Driving BLDC/DC Motor Drivers Smart Drivers

Communicating Wired SW CAN, SENT and LIN Wireless RF & RFID/NFC

Facilities and locations

Sales & Applications
Tessenderlo – Belgium
Greater China - Shanghai, Shenzhen, Hong Kong, Taipei
Paris - France
Erfurt – Germany
Italy
Yokohama - Japan
Seoul - Korea
Detroit, MI - USA
Silicon Valley, CA – USA
Nashua, NH - USA

Manufacturing

Ieper – Belgium
Sofia - Bulgaria
Erfurt – Germany
Kuching - Malaysia

Research & Development
Tessenderlo – Belgium
Sofia – Bulgaria
Paris - France
Erfurt – Germany
Manila - Philippines
Bevaix - Switzerland
Kiev - Ukraine
Nashua, NH – USA

Basics: triaxis® technology

Triaxis[®] principle:

3 axis magnetic field measurement from a single sensor

Triaxis[®] types:

 Position sensor – rotational, linear, 3D displacement

Current sensor mounted on a bus

bar

Triaxis[®] characteristics:

- Small size
- High temperature
- Contactless
- Robustness
- Self-diagnostic
- High resolution
- High linearity
- High accuracy

Test requirements and challenges

Test requirements:

- Rotating magnetic stimulation during electrical test
- Multi-site testing at the wafer level (for efficient throughput)
- Tests at several temperatures from 35 to 175 ° C
- Robust and uniform magnetic fields across all the sites
 Challenges:
 - Stability of the probe card (and test-cell) over the full temperature range
 - → Stable probe-to-pad alignment and minimal pad damage
 - Magnetic source as close as possible to the wafer but the probe card is in the way!
 - Minimal magnetic interference from test cell (probe card, prober chuck, etc.)

Test-cell considerations

- Wafer chuck:
 - High temperature capability with minimal magnetic noise
- Prober:
 - High-temperature software options required to ensure good probe-to-pad alignment
 - Modified insert ring for mechanical stability at high temperatures
- Probe card:
 - Minimize non-magnetic materials
 - High-temperature materials
 - Stiffener required on bottom (wafer) side
- Magnetic test head:
 - Designed for rotation and installation on wafer prober

Concept

SW Test Workshop - June 5-8, 2016

Melex

System setup

High-temperature probe card (PCB & stiffener)

Material selection

Test cell item	Material	Stiffness (Shear modulus) Gpa	Thermal expansion (CTE) um/m-°C	Thermal conductivity W/(m K)	Magnetic susceptibility	Selection result
PC stiffener + PC support (Prober insert ring)	Low-CTE steels	56	2	14	High	×
	Stainless steels	77	14	16	Med	×
	Aluminum alloy	27	23	205	Low	
РСВ	High-Tg epoxy-glass Cu/Ni/Au plating	Variable	15 (XY plane) 60 (Z-axis)	Low	Low	Weak point
Probe ring	Ceramic	360	5	18	Low	\checkmark
Probe-ring epoxy	High-temp. epoxy	15	10	Low	Low	\sim
	Standard Epoxy	Poor	50	Low	Low	×
Probes	Tungsten-Rhenium	161	4	174	Low	
Wafer	Silicon		3			

Melex

G

Probing conditions

Magnetic field uniformity

	•	10.5	mm	
2.4	Site 1 95%	Site 3 96%	Site 5 99%	Site 7 96%
3.4 mm	Site 2 96%	Site 4 98%	Site 6 100%	Site 8 98%

Center of magnetic field slightly shifted towards site 6 Field uniformity OK (5% variation across all sites)

Evaluation criteria - summary

Criteria	Specification	Measured	Assessment
Stable PTPA (probe to pad alignment)			
Alignment tolerance over full temperature range	±7μm		
Planarity tolerance over full temperature range	± 7 μm		
Tip diameter (25 μm)	± 5 μm		0
Acceptable probe card (system) deflection			
Uniform and stable pad damage (scrub marks)			
Scrub area in specification			
Scrub depth in specification			
Maximum scrub depth not to exceed material thickness			
Stable functionality over operating temperature	35 1 75 °C		
Stable contact at recommended OD			
Repeatable yields at all temperatures			
Test results uniform among all sites			
Magnetic field uniform among all sites	5% field variation		
Probe card information			
Probe card cost	Low cost		
Probe card technology	Cantilever		
Tip Shape	Semi Radius		0
Probe Force (g@ODtarget)	6 g ± 20%		

Scrub mark size versus temperature @ 60 μm OD

95 ° C

SW Test Workshop - June 5-8, 2016

175 ° C

25 µm

JEI

150 ° C

3D & profile @ 175 ° C (60 µm OD)

Needle alignment drift

Ambient

175 deg C

Drift is relative to tip position @ 0 TD.

Planarity is relative to tip planarity @ 0 TD.

MA

Tip diameter

Ambient

Not temperature-dependent.

Probe-mark position @ ambient

Melexis Microelectronic Integrated Systems

Probe-mark position versus temperature

Probe card settling time

SW Test Workshop - June 5-8, 2016

MA

Temperature effects

Initial functional test results

Yield versus number of wafers

Evaluation criteria - results

Criteria	Specification	Measured	Assessment
Stable PTPA (probe to pad alignment)			~
Alignment tolerance over full temperature range	± 7 μm	+ 4 μm -10 μm	~
Planarity tolerance over full temperature range	± 7 μm	- <mark>14</mark> μm	~
Tip diameter (25 μm)	± 5 μm	min 18 μm- max 32 μm	Acceptable
Acceptable probe card (system) deflection			~
Uniform and stable pad damage (scrub marks)			~
Scrub area in specification		~1200 μm² (Ambient) ~400 μm² (175 °C)	~
Scrub depth in specification		~680 nm (Ambient) ~405 nm (175 °C)	~
Maximum scrub depth not to exceed material thickness		817 nm (Ambient) 633 nm (175 °C)	~
Stable functionality over operating temperature	35 175 °C		~
Stable contact at recommended OD			~
Repeatable yields at all temperatures			~
Test results uniform among all sites			~
Magnetic field uniform among all sites	5% field variation	5.5% in X-direction < 1% in Y-direction	Acceptable
Probe card information			~
Probe card cost	Low cost		~
Probe card technology	Cantilever		~
Tip Shape	Semi Radius		~
Probe Force (g@ODtarget)	6 g ± 20%		~

Conclusions

- System-level approach successful for high-temp and multi-site testing of magnetic devices
- Entire test cell needs to be considered
- Low-cost cantilever probecard is acceptable
- Concept qualified for future products

Future work

- Observe the effect of probe card aging (in progress)
- Optimize first-pass yields for each temperature
- Evaluate low-force probe material to reduce scrub size and depth
- Evaluate the concept over wider temperature range (from -40 ° C to 200 ° C)
- Increase tests parallelism (possibly with vertical probe card)
- Improve positioning of magnetic sensor (in X Y Z)

Acknowledgements

I would like to thank the following people for their support and input:

Christopher Mackanic	JEM STATES
• Joe Mai	JEM
Sebastien Debeaux	JEM
Sebastien Perino	JEM
Ruth Verheyen	KUL
Elcke Vercruysse	Melexis
Filip Beyens	Melexis
Frederic Plancke	Melexis
Julien Throckmorton	Melexis
Lindsey Ameele	Melexis
Olivier Dubrulle	Melexis
Peter Schops	Melexis
Vincent Hiligsmann	Melexis
Mario Meirhaeghe	Nikon Metrology Europe

Thank you. Questions ?

