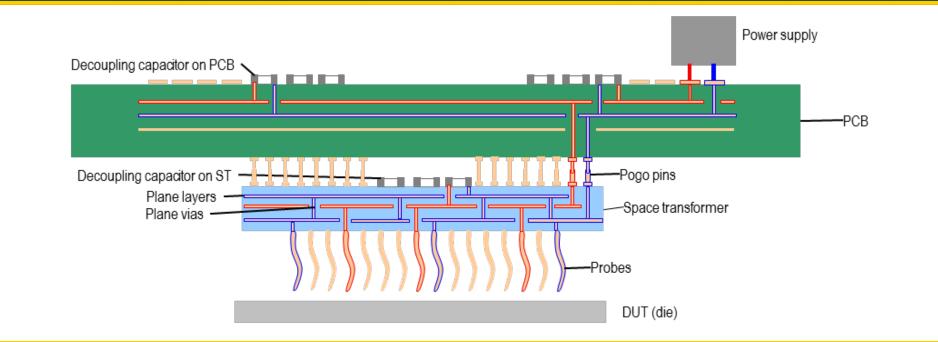


SW Test Workshop Semiconductor Wafer Test Workshop

Simulating Electrical Performance of Probe Cards to Enable them to Work "Right out of the Box"

Pankaj Ahirwar Sr. Electrical Engineer, SV TCL Tempe, AZ, USA


June 4-7, 2017

Introduction

Need for SI/PI simulations for probe-cards
SI/PI Analysis methods for probe-cards
S-parameters Measurement, Simulation & Correlation
Summary

Anatomy of a Probe Card (What does an Electrical Engineer see?)

"A complex electro-mechanical system with passive electrical components"

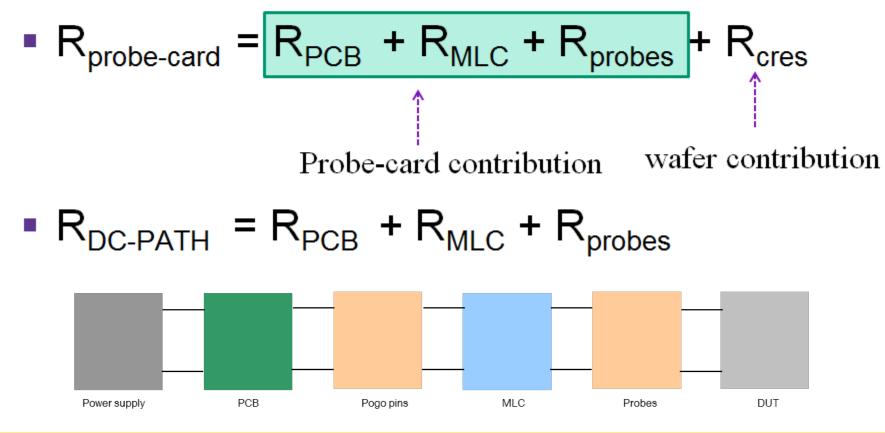
Need for SI/PI Simulations

- Due to reducing design cycles it is essential to make sure cards perform right out of the box

 accurate simulations are a step towards achieving this goal !!
- Automotive applications require high currents hence are more susceptible to higher IR drop & increased power supply noise.
- Probe cards no longer just serve as DC connection interface but are evolving according to industry needs hence SI/PI simulation methodology also needs to evolve accordingly.

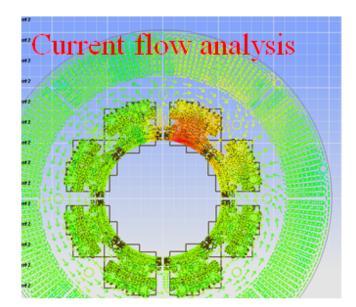
SI/PI Analysis Items for Probe Cards

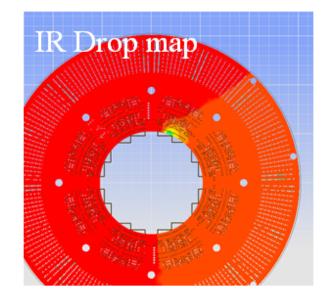
- DC Resistance estimation
- DC IR drop summary
- RLC extraction
- Decoupling capacitor placement distance estimation
- PDN analysis strategy
- S-parameter simulation, measurement & correlation


DC IR Drop Analysis

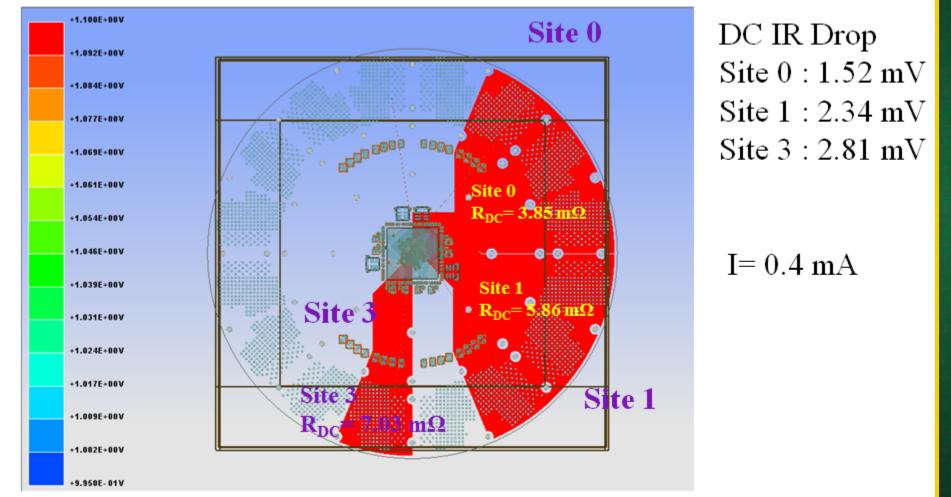
Tools used

ANSYS SIwave or Keysight ADS SI/PI pro
Information needed to do such an analysis
Voltage of PWR Supply
Peak DC current draw from a PWR Supply
Allowed DC IR drop (most cases 0.5-5%)


DC Path Resistance Estimation


 DC IR drop depends on full path resistance

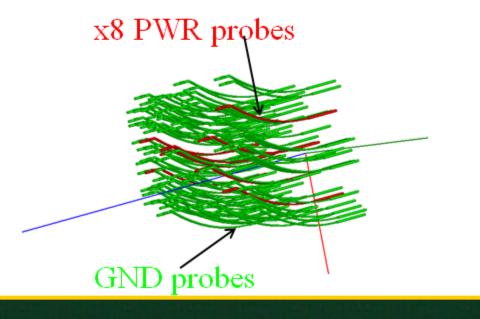
DC IR Drop Analysis


- Once DC resistance is determined using simulations, IR drop can be calculated with Ohm's law.
- DC IR drop = $Rdc .I_{max}$
- An IR drop of 0.5%-5% of the nominal voltage is tolerated depending on the total system-level margin allowed for proper device functionality and sense line position.

DC IR Drop Analysis: PCB

PWR = VDD1P0

Pankaj Ahirwar


DC IR Drop Analysis : MLC (Space Transformer)

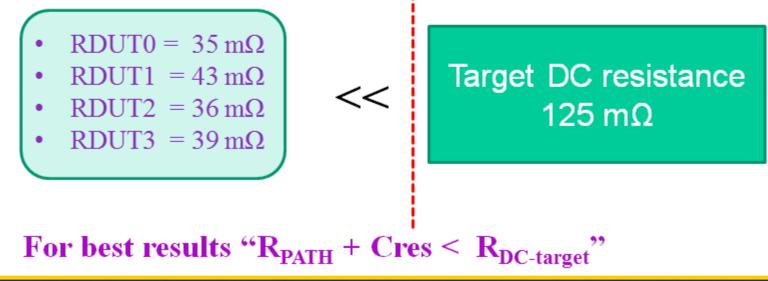
+9.971E-01V	DUT 1 DUT 0
+9.942E-01V	$R_{\rm DC}=17.57~{\rm m}\Omega$. $R_{\rm DC}=11.95~{\rm m}\Omega$
+9.913E-01V	
+9.884E-01V	
+9.855E- 01V	
+9.827E-01V	and the second
+9.798E-01V	
+9.769E-01V	
+9.741E-01V	
+9.713E-01V	DET 2 DET 3
+9.684E-01V	$R_{Dc} = 10.94 \text{ m}\Omega$ $R_{Dc} = 12.40 \text{ m}\Omega$
+9.656E-01V	
+9.628E-01V	itaritarita i inci incitaritari aritaritaritaritaritaritarita incita i in

Pankaj Ahirwar

DC IR Drop Analysis : Probes

- Probe diameter = 3.0 mils
- $R_{DC_{probe}} = 0.16414 \Omega$
- Each site has 8 probes ; $R \sim 0.02$ Ohm $\rightarrow 20 \text{ m}\Omega$

DC IR Drop Analysis


Power Plane	Name	PCB contribution (mΩ)	MLC contribution (mΩ)	Probe Contribution (mΩ) *8 each site	Total Probe-card DC resistance (mΩ)	$\begin{array}{c} \textbf{DC IR Drop due} \\ \textbf{to probe-card} \\ \Delta \textbf{V} = \textbf{I}_{\textbf{DC}} \textbf{x} \textbf{R}_{\textbf{DC}} \\ (\textbf{mV}) \end{array}$
	DUT 0	3.85	11.95	20	35.8	14.32
VDD1V0 CDD2	DUT 1	5.86 17.57		20	43.43	17.37
VDD1V0_GRP3	DUT 2	5.09	10.94	20	36.03	14.41
	DUT 3	7.03	12.40	20	39.43	15.77

Estimating % contribution PCB/Total = % PCB MLC/Total = % MLC Probe/Total = % Probe

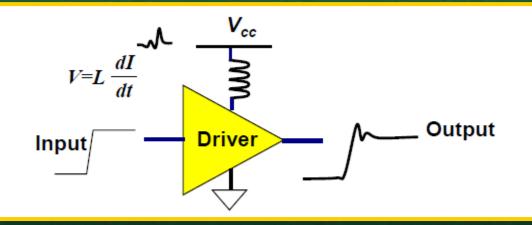
	DUT 0	10.75	33.37	55.86
% contribution	DUT 1	13.49	40.45	46.05
% contribution	DUT 2	14.12	30.36	55.50
	DUT 3	17.82	31.48	50.72

Target DC Resistance

- Achieving low DC path resistance and meeting target impedance is critical.
 - Analyze full path *DC IR drop* = $Rdc .I_{max}$ and minimize R_{DC}
 - R_{DC} = Voltage_rail * (% tolerance) / I_{MAX}
 - $R_{VDD1P0}(target) = 1.0^{V*} 0.05 / (0.4 \text{mA}) = 125 \text{ m}\Omega$

DC IR Drop Summary

- Estimate contribution from PCB
- Estimate contribution from probes
- Estimate contribution of space-transformer
- Information needed
 - PCB DC resistance (either estimate or use Slwave)
 - Number of probes for a PWR Supply
 - Size of probes (diameter)
 - Probe material and its resistance.
 - Determine whether or not DC IR drop targets are met or not.


DC IR Drop Summary Report

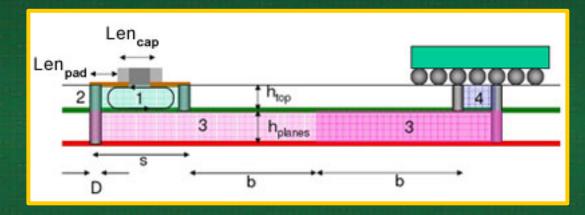
A	В	С	D	E	F	G	Н	I	J	к	L	м
Supply name	Supply voltage	Max current supply (mA)	MLC LGA Pads	No. of PWR probes	DUT	MLC DC Resistance (Ohm)	PCB resistance estimated(Oh m)	Probe resistance estimated(Oh m)	Probe-card Total Resistance (Ohm)	IR drop (mV)	belo v 20mV (yes/no)	Comments
VDDA	4.2V	340	4	10	0		0.01	0.0275	0.088	29.92	no	device design limitation,
					1	0.0501			0.0876	29.784	no	not enough VDDA pads, probes
					2				0.0877	29.818	no	
					3				0.0885	30.09	no	
					4				0.0801	27.234	no	
					5				0.0811	27.574	no	
					6				0.0821	27.914	no	
		170	_	-	7				0.0826	28.084	no	
VDD	2.8	170	3	(0		0.01	0.0393	0.1243	21.131	no	limitation due to number of probe
					1	0.0813			0.1306	22.202	no	less LGA pads
					2				0.1329	22.593	no	
									0.1317	22.389 23.681	no	
									0.1393	23.681	no no	
					6				0.1533	26.061	no	
					7				0.1533	26.741	no	
VDDD	3.3	20	1	2			0.01	0.1375	0.3555	7.11	yes	
	0.0			_	1	0.236			0.3835	7.67	yes	
					2	-			0.3665	7.33	yes	
					3				0.3205	6.41	yes	
					4	0.206			0.3535	7.07	yes	
					5	0.222			0.3695	7.39	yes	
					6	0.216			0.3635	7.27	yes	
					7	0.17			0.3175	6.35	yes	
V1V2	1.2	40	1	2	0	0.193	0.01	0.1375	0.3405	13.62	yes	
					1	0.251			0.3985	15.94	yes	
					2	0.277			0.4245	16.98	yes	
					3				0.3785	15.14	yes	
					4	0.193			0.3405	13.62	yes	
					5	0.255			0.4025	16.1	yes	
					6				0.4295	17.18	yes	
					7	0.228			0.3755	15.02	yes	

RLC Extraction

Tools used

- ANSYS Slwave
- Instructions
 - Setup ports on PWR supply with impedance = 0.1 Ohm
 - Extract S-parameters from DC to 1GHz
 - Extract R,L,C values at 100 MHz

Compute RLGC for a PS


Compute RLGC Sub-Circuit	
Compute RLGC Parameters at 0.000e+00	
Sel RLGC Matrices	
N Resistance (Ohms) Inductance (nH) Conductance (mS) Capacitance (pF)	
0 1 0-VDDA:LGA_LGA_0-VDDA_Group_LGA_GND_Group	
1 0-VDDA:LGA LGA 0-VDDA Group LGA GND Group 5.056552e-02	
s s s	
6	
Copy Export RLGC Subcircuit Print	Close
Change Type to Source Terminal Change Type to Sink Terminal Compute REGC Matrices	

DC resistance can be estimated at 0 Hz L,C can be estimated @ 100 MHz

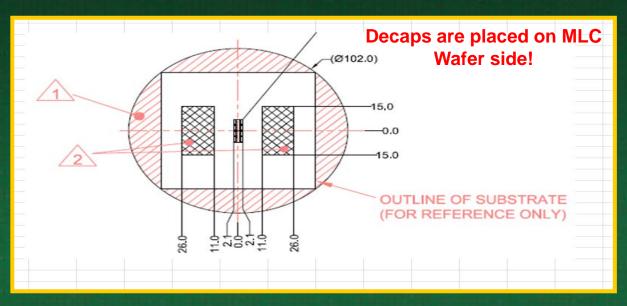
Pankaj Ahirwar

Decoupling Capacitor Distance Estimation

- Determine if location of decap mounting is close enough to DUT
- Determine loop-inductance of capacitors

Lmnt = Ltrace + Lvia; Ldecap = Lmnt + Lpackage

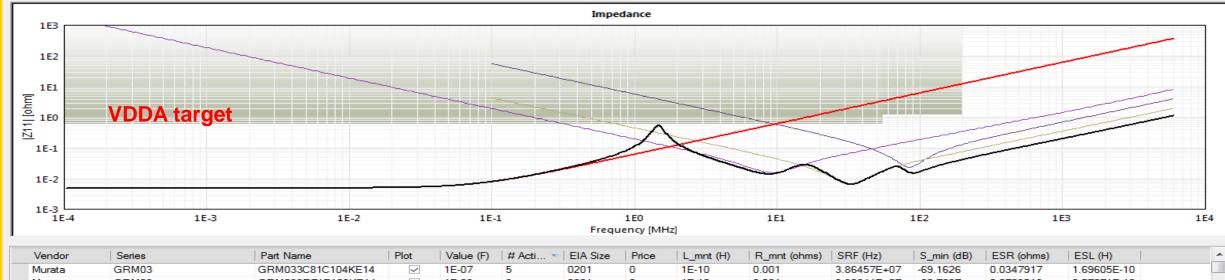
$$fres = \frac{1}{2\pi\sqrt{(Ldecap * Cdecap)}}$$
$$\lambda = \frac{c}{fres * \sqrt{\epsilon r}}$$


Using mounting inductance and capacitor package inductance -> Resonant Frequency of a decap is determined

"To be effective decap needs to be placed within 1/40th of resonant wavelength*"

*Become a Decoupling Capacitor Network Guru, Part 2 (www.eetimes.com)

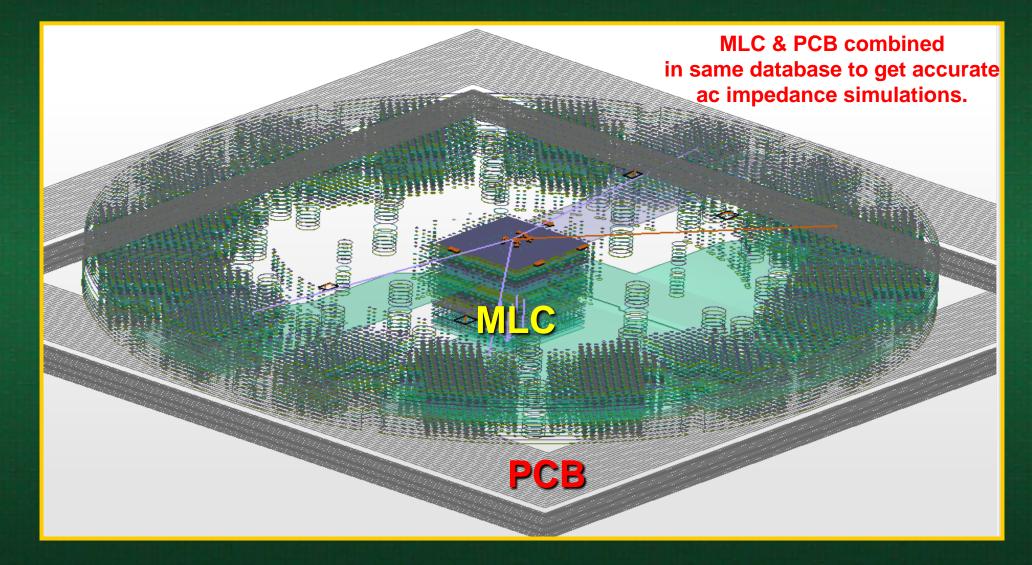
Pankaj Ahirwar


Decoupling Placement for Critical PWR Supplies

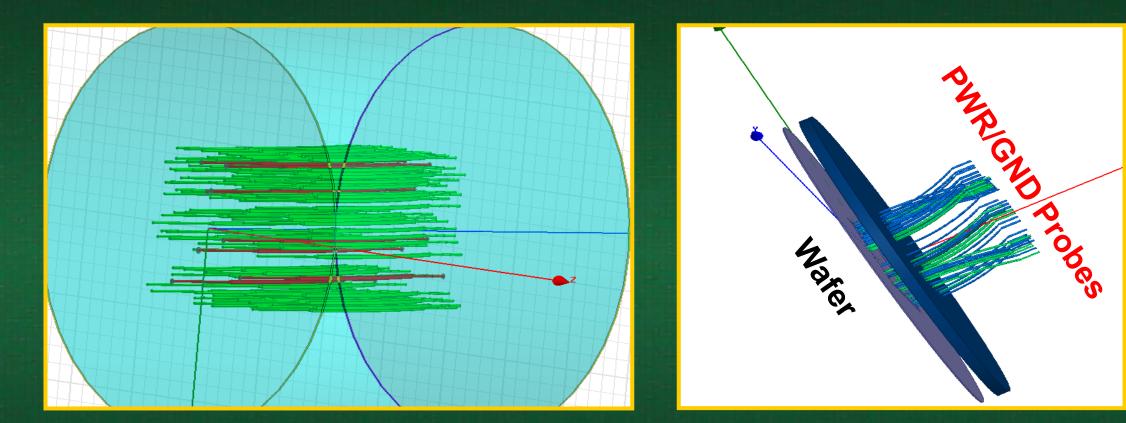
Capacitor	Capacitance Value (µF)	Resonant Frequency (MHz)	$(\lambda/40)$ (placement distance to be less than $\lambda/40$)	Is placement distance OK ?
GRM033C81C104KE14D	0.1	38.04	62 mm	YES
GRM033C81A105ME05D	1	11.81	202 mm	YES
GRM033R71E103ME15	0.01	115.67	20.71 mm	YES

Estimating Required Decoupling Capacitance

Capacitor Library Browser 盐区III 新区区1174

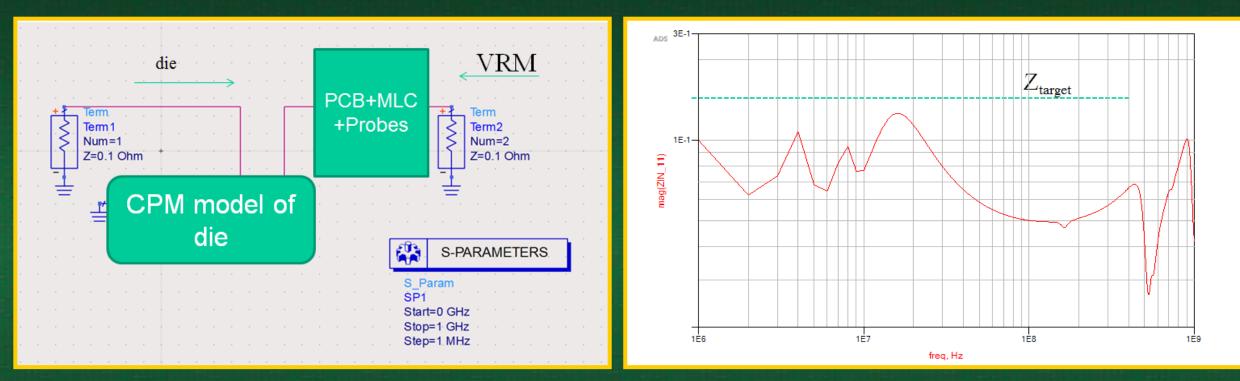


Murata	GRM03	GRM033C81C104KE14	\checkmark	1E-07	5	0201	0	1E-10	0.001	3.86457E+07	-69.1626	0.0347917	1.69605E-10
Murata	GRM03	GRM033R71E103KE14	\checkmark	1E-08	3	0201	0	1E-10	0.001	9.92644E+07	-62.7637	0.0723518	2.57071E-10
 Murata 	GRM03	GRM033C80J105ME05	\checkmark	1E-06	1	0201	0	1E-10	0.001	1.10361E+07	-76.2572	0.0153814	2.07975E-10
Murata	GRM03	GRM0332C1E271GA01		2.7E-10	0	0201	0	1E-10	0.001	5.75544E+08	-58.1999	0.118707	2.83217E-10
Murata	GRM03	GRM0332C1E271JA01		2.7E-10	0	0201	0	1E-10	0.001	5.75544E+08	-58.1999	0.118707	2.83217E-10
Murata	GRM03	GRM0332C1E331GA01		3.3E-10	0	0201	0	1E-10	0.001	5.31221E+08	-58.4202	0.114097	2.72004E-10
Murata	GRM03	GRM0332C1E331JA01		3.3E-10	0	0201	0	1E-10	0.001	5.31221E+08	-58.4202	0.114097	2.72004E-10
Murata	GRM03	GRM0332C1E391GA01		3.9E-10	0	0201	0	1E-10	0.001	4.86643E+08	-59.1541	0.106636	2.74255E-10


SW Test Workshop | June 4-7,2017

 \times

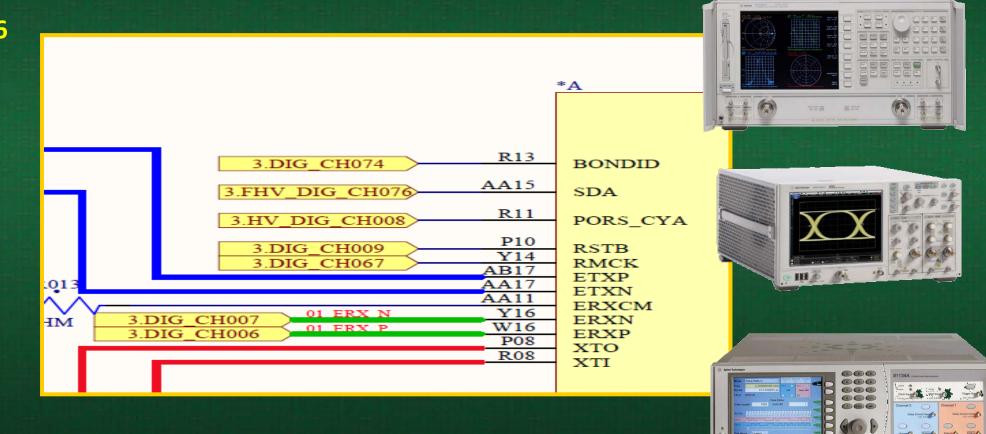
PDN Analysis Strategy



HFSS Analysis of Actual Probe Arrangement

Actual probe layout is simulated in HFSS. This will show any weakness in PDN

Building Full Channel for PDN (Including Die)

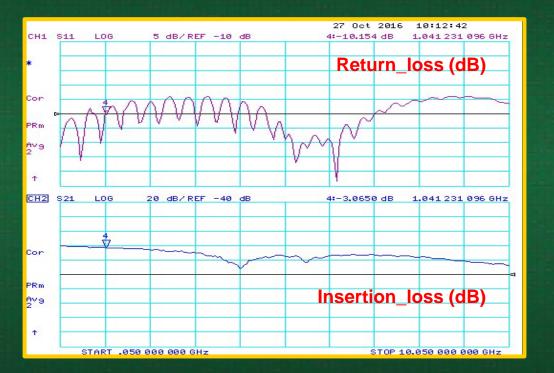

Correlating Simulations with Measurements

- Simulations are prone to errors & can give wrong results.....
 - Always know what will be the expected outcome from a simulation
- Measurements are only as accurate as tools/setup/user......
 - VNA/TDR measurements can be tedious and time-consuming
- Correlating Simulation with Measurements is important
 - Saves time and resources
 - Confidence in simulations and measurements

S-parameters Measurements, Simulations & Correlation

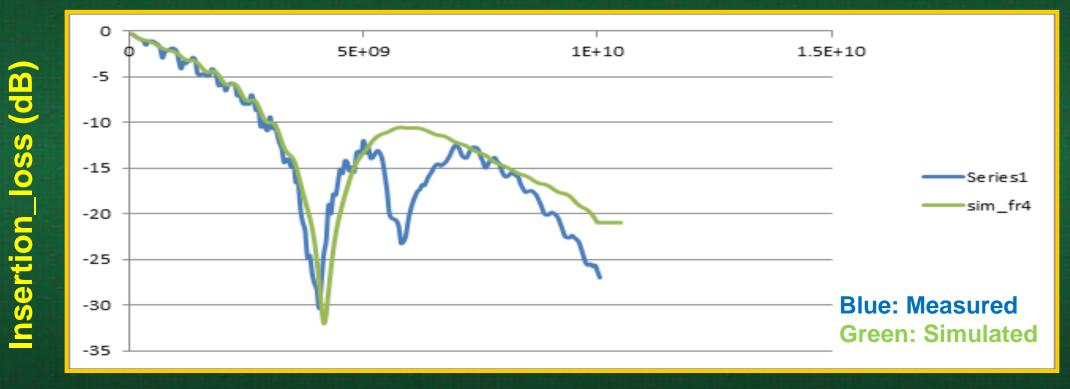
- To measure electrical performance (3 dB bandwidth) of a differential pair on a Probe Card Assembly.
- The selected signals for measurement are (naming convention as per tester channel)
- 3.DIG_CH007
- 3.DIG_CH006

Measurement Setup

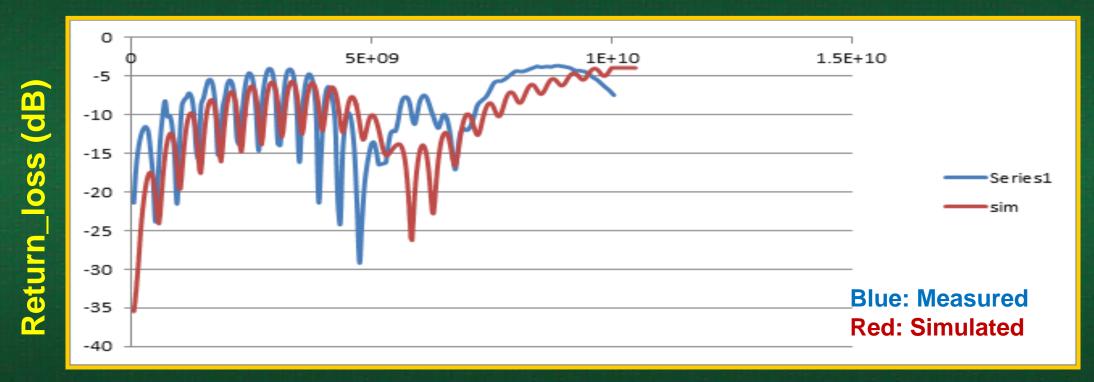

- VNA (HP 8720D 50 MHz to 20 GHz)
- 1250 µm Cascade Microtech probe
- 250 µm Cascade Microtech probe
- Calibration substrate
- Cables & other accessories
- Lab measurements : 50 MHz to 10.5 GHz

PCB Measurements

3.DIG_CH007



3.DIG_CH006


PCB S-parameter Correlation

Measurement Correlates well with Simulations

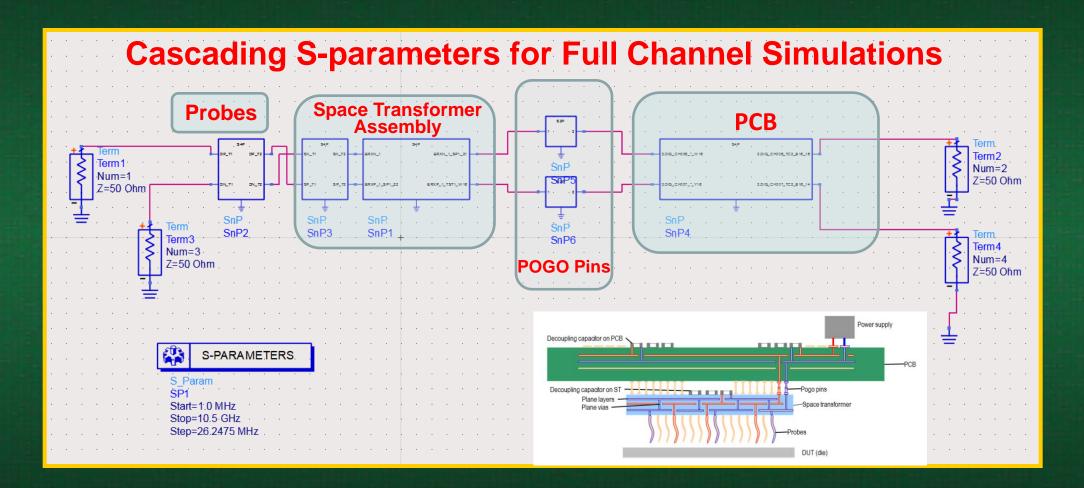
PCB S-parameter Correlation

Return_loss Measured/Simulated for ERXP

Space Transformer Measurements

3.DIG_CH007

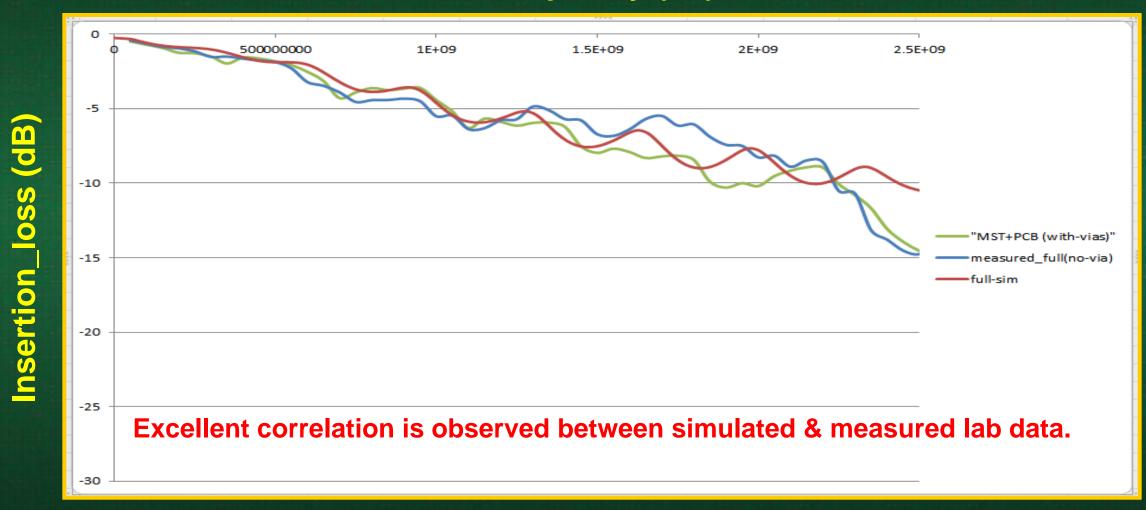
3.DIG_CH006



Full Channel Measurements

3.DIG_CH007 or ERXN

Full Channel Simulations vs Measurements Correlation



SW Test Workshop | June 4-7,2017

Pankaj Ahirwar

Full Channel Simulations/Measurement Correlation

Frequency (Hz)

Pankaj Ahirwar

Summary

- Early & accurate simulation is key to improve electrical performance of probe cards.
- Accurate simulation results are obtained for controlled impedance structures in probe cards.
- Simulations correlate well with laboratory measurements.
- PCB insertion losses are dominant loss factor (roughly 50% of losses can be attributed to PCB routes); extra care should be taken during PCB routing.
 - Reduce route lengths for critical signals
 - PCB stack-up should be optimized to reduce stub lengths on critical signals
 - For higher 3dB bandwidths low loss dielectric should be chosen

SI/PI co-simulation is necessary for designing high performance probe cards.

Accurate simulations help reduce probe-card design time & this simulation methodology can be reused on various probe-cards.

References

• Principles of Power Integrity for PDN Design (1st Edition)

- Larry Smith & Eric Bogatin
- Prentice Hall
- Signal & Power Integrity Simplified (2nd Edition)
 - Eric Bogatin
 - Prentice Hall
- Board Design Resource Center (www.altera.com)
- Tools

ANSYS HFSS, Slwave and Keysight ADS & SI/PI pro