

SW Test Workshop Semiconductor Wafer Test Workshop

HBM fine pitch micro pillar grid array probing evaluation

Raffaele Vallauri, Technoprobe Daniele Perego, Technoprobe Marco Prea, Technoprobe Jaehong Kim, Samsung Electronics Jinyeong Yun, Samsung Electronics

June 4-7, 2017

Introduction

- HBM product description
- Technoprobe TPEG[™] MEMS T50 probing solution
- HBM Probe Card (MPGA Contactor) description
- Testing wafers description
- Evaluation results
- Conclusions and next steps

Introduction

- Samsung Electronics has announced the world first mass production of HBM2 in 2016.
- Technoprobe developed a specific probing solution for this application based on TPEG[™] MEMS T50 probe technology and on high density MLO solution.
- Development and characterization of the full solution has been completely evaluated jointly with Samsung Electronics. Now Samsung Electronics is ready for bump testing with this solution.
- In this paper a description of the device requirements and Technoprobe probing solution will be presented and also characterization data will be provided and discussed in details

HBM2 product description

- This state of the art 3D-stacked DRAM uses TSV technology and has grid array of 4942 microbumps at 55um pitch as its signal terminal.
 - Until now, there was no proper solution for bump probing such a fine pitch and high density as well in the market.

Technoprobe TPEG™ MEMS T50 probing solution

PARAMETER	TPEG™ MEMS T50
Needle diameter	1.25 mils equivalent
Tip shape	Flat
X, Y alignment accuracy and Z planarity	X,Y: ± 7 μm; Z plan: Δ 20 μm
Min pitch and configuration	50 μm Full Array
Pin Current (CCC)	350 mA (HC alloy)

Fully populated MPGA Contactor Structure

MLO (Multi-Layer Organic) ST Pitch converting 55→400 µm

Wafer Side View

Tester Side View

Evaluation Results Summary

#	Items	Method	Spec	Result	
1	Alignment Error	Measuring the radial alignment(X-Y) error on PRVX4	< 8µm	< 7µm	ОК
2	Contact Resistance	Force V – Measure I method after remove internal path resistance	< 1Ω	< 0.3Ω	ОК
3	Planarity	Measuring full loading planarity using conductive check plate on PRVX4	Δ20um	Δ9um	ОК
4	Probe Mark Area	Measuring the PM area using Confocal Microscope at various OD(50,75,100um)	< 30%	< 20%	ОК
5	Height loss	Measuring the bump height using CAMTEK Eagle-I at various OD(50,75,100um)	< 3µm	< 1µm	ОК
6	Current Carrying Capability (CCC)	Measuring the CCC using ISMI '09	Max. 100mA	Max. 360 mA	ОК
7	Cleaning	Measuring the Cres every 1K TD Compare between No cleaning and cleaning at 75um OD	_	Need to clean each 100 TD	-

Alignment Error

Measuring X-Y Alignment of needles using Vision method for all pins (Nominal pitch 55um)

- Calculate the alignment error using Radial Alignment Error between ideal position and real position
- Imaging process using PRVX4 check plate with 10um OD (All needles scan)
- Measuring result : Max 7um \rightarrow Spec in(< 8µm)

•

Alignment Image @ OD 75um

(1)

 $(\mathbf{6})$

(2)

(5)

(3)

4

- Prober camera is used to inspect the probe marks through the wafer

Contact Resistance (CRES) Setup

• Contact Resistance (C_RES) Measuring Method

- Force V = 10 mV , Measure I (Clamp I = 50 mA)
- 48 pins measured (24 pairs)
- R probe = 0.5x R Pair = 0.5 x (V/I)
- Plot of 24 C_RES values for each touchdown

• H/W setup

- Wired space transformer PC
- Measuring PC Path Resistance
- In this setup, Path Resistance (PCB Pattern + WST + probe) : 1.2Ω

• Measuring results

- Spec in for OD 50~100 μm
- Max Cres = 0.3Ω (Spec = under 2Ω)

Contact Resistance (CRES) Results

- Contact Resistance @ different Ods
 - Measuring Result : Spec in for OD 50~100um
 - Max Cres = 0.3Ω (Spec = under 2Ω)

PRVX4 Setup

Motherboard (MB) docked on PRVX4

Probe card loaded on MB

MB and PC under test

PrecisionWoRx VX4 - Standard Certification system for P/card - Outgoing test with PRVX4 for all P/Card

Unloaded Planarity

- Unloaded planarity is found using a conductive post, loading one probe at a time
- Electrically non-connected pins are tested mechanically, measuring the Z-quote corresponding to a given mechanical reaction force applied by the post needle
- Testing conditions : Testing voltage : 5V, Maximum testing over travel : 100 μm
- Measuring Result : Max Δ = 9 μ m Spec in (Δ 20 μ m)

Probe Mark Area

• Made 4942 full probe pin populated Probe Head, Measured Cres using Daisy Chain Wafer

- Probe marks area inspection via confocal microscope at different OD = 50, 75, 100um
- Each die 30 μbumps are inspected. Confocal microscope is used to obtain a 3D image of bump top surface
- Measuring Result : Max 20% Spec in (≤30%)

OD	Average PM area	SD	MIN	ΜΑΧ	
50µm	14.4%	1.1%	12.6%	16.7%	
75µm	16.6%	1.0%	14.7%	19.2%	
100µm	17.9%	1.3%	15.8%	20.3%	

Bump slicing to calculate probe mark area

Probe Mark Area = (a/A)² a : scrub diameter A : pillar diameter

	Image	Area %		Image	Area %		Image	Area %		Image	Area %		Image	Area %		Image	Area %
Bump n°1		15.5 %	Bump n°6	*	16.1 %	Bump n°11		16.1 %	Bump n°16	(A)	16.3 %	Bump n°21		16.9 %	Bump n°26		15.0 %
Bump n°2	and the second s	15.9 %	Bump n°7		16.0 %	Bump n°12		16.9 %	Bump n°17		14.7 %	Bump n°22		18.2 %	Bump n°27		16.9 %
Bump n°3		15.9 %	Bump n°8		16.6 %	Bump n°13		16.3 %	Bump n°18		15.7 %	Bump n°23		18.8 %	Bump n°28	Ŵ	16.9 %
Bump n°4		17.1 %	Bump n°9		15.9 %	Bump n°14	**	16.8 %	Bump n°19	-	17.4 %	Bump n°24		19.2 %	Bump n°29	No.	16.1 %
Bump n°5	ġ	16.3 %	Bump n°10		17.2 %	Bump n°15	*	17.0 %	Bump n°20		16.2 %	Bump n°25	-	17.0 %	Bump n°30	K	18.1 %

Height Loss

Measure Bump height before and after Probing

- Compare Bump Height @ different OD
- Sample size: 20dies (98,840bumps)
- Measuring Equipment : CAMTEK / Eagle-I
- Max under 1um \rightarrow Spec In (\leq 3um)

X 3 Zones : 50,75,100um (Typical OD¹⁾ : 75um)

unit : µm							
OD		Aver					
	Height Loss	NP	Р				
50	0.75	38.32	37.57				
75	0.88	38.24	37.36				
100	0.94	38.40	37.46				
	The Case						

Current Carrying Capability (CCC)

Standard Method : ISMI ('09)

In this PH 4 needles are measured: CCC(mean) = 360 mA

Cleaning

□ Contact resistance variance during TDs without cleaning

- Total 1120 TDs @ 75um OD , Measuring 24 C_RES every TD
- 5 Times measuring(224 TD) using parts of Daisy Chain wafer
- C_RES discontinuity → Because of Die Realignment.

□ Contact resistance variance during TDs with cleaning

- Total 1120 TDs @ 75um OD , Measuring 24 C_RES every TD
- 5 Times measuring(224 TD) using parts of Daisy Chain wafer
- Probe tip Cleaning : each 100TD: 3M pink paper, X-Y movement (30 μm L pattern), Cleaning OD: 30 μm

✓ Consistently increase Cres with more TD

✓ Could keep the Stable Cres with claning

Conclusions and Further Study

- We proved HBM package test (DC/functional) is possible probing directly all micro bumps
- Fine Pitch 55um package has no conventional socket solution Probing solution is a good alternative such a fine pitch package

• Next steps

- Multi parallel and high speed should be improved for mass production
- High yield, high density, fine pitch space transformer solution needed
- Probe mark's effects on soldering processing in 2.5D package need to be evaluated

Thanks for your Support!

Raffaele Vallauri R&D & Process Engineering Director Technoprobe Italy; (+39) 0399992557 raffaele.vallauri@technoprobe.com

Daniele Perego R&D Engineer Technoprobe Italy ; (+39) 0399992548 daniele.perego@technoprobe.com

Marco Prea Executive VP Korea Technoprobe Italy; (+39) 0399992521 marco.prea@technoprobe.com Jaehong Kim Master, Mechatronics R&D Center Samsung Electronics jaehong1.kim@samsung.com

Jinyeong Yun Principal Engineer, Mechatronics R&D Center Samsung Electronics jinyeong.yun@samsung.com