

SW Test Workshop Semiconductor Wafer Test Workshop

Challenges of Minimizing Scrub Mark Depth While Maintaining Low Contact Resistance on Extremely Thin Probe Pads

Blake Rapp Kurt Guthzeit Aaron Woodard

June 4-7, 2017

OUTLINE

Background

- Contributing factors
- Examples
- Short-term solutions
- Technology gaps

FIVE BIG TECHNOLOGY TRENDS

Automotive Memory Growth

Source: Micron and industry analysts

WHERE IS THIS LEADING US?

Higher chip density driven by

- Advancing process nodes, i.e. manufacturing cost reduction
- Smaller package form factor
- Customer requirements

Smaller, thinner probe pads driven by

- Improved functional performance
- Lower power consumption
- Customer requirements

Increasing need for memory requires high confidence, high yield die for stacking

Contributing Factors

CHALLENGES

Increasing parallelism

Shrinking pad size + smaller probe tips = pad damage

• $Pad Stress = \frac{Force \ of \ single \ probe}{Probe \ tip \ area}$

- Reduced pad thickness
- Pad alloy variation
- Scrub characteristics
- Multiple scrubs per pad

Lack of reliable, high-volume metrology tools

PROCESS VARIATION

- Memory process technology/variation
- Probe technology variation
 - Probe tip size
 - Temperature
 - Probe force
 - Lifetime
 - Planarity \mathbf{O}

Status Quo

TODAY'S REALITY

Single TD No Punch-through

Multiple TDs No Punch-through

Multiple TDs With Punch-through

Not necessarily a reflection of Micron probe pads

10

TODAY'S REALITY

- 2 insertions consumes half of the probe depth
- Pad material displacement is a concern for wire and pillar bonding
- Underlayer integrity a concern after multiple insertions

PROBE STRESS SIMULATION

Lower force lower stress. Increase tip size lower stress.

Baseline: 100um OD , 0.1g/um probe force. 1um X and 1um $Y \approx 0.02$ g/um force

<u>icron</u>

SCRUB METROLOGY TOOL DOE RESULTS

- 5 tools evaluated
- 1 tool met most criteria (*)
 - Evaluated at slow speed
 - Extensive recipe tuning needed
 - Area
 - Depth

METROLOGY TOOL DOE REPEATABILITY

Repeatability unacceptable (0.32 < R² < 0.48)</p>

Repeatability acceptable on 1 tool (after extensive recipe tuning)

3D METROLOGY SUMMARY

Solution	Pros	Cons	
AFM	Very accurate	Very slow; low volume	
Other 3D Tools	Higher volume	Unreliable depth data	

Not necessarily a reflection of Micron probe pads

Short-Term Solutions

SCRUB DEPTH DOE RESULTS

- Increased tip size to distribute probe stress
- Larger probe tips minimize scrub depth/pile height
 - PSC
 - EOL
 - Correlation/cleaning
- Improves confidence in bonding after multiple TDs

SCRUB DEPTH DOE RESULTS

Tip conditioning is a high maintenance & un-optimized temporary solution
SW Test Workshop | June 4 – 7, 2017

What We Need

PROBE TECHNOLOGY REQUIREMENTS

We Need

- Low-force, high-current probes
- Low-scrub/material displacement
- Tolerance to multiple TDs
- Extended temp range
- Higher frequencies

PMI METROLOGY TOOL REQUIREMENTS

We Need

HVM-capable in-line 3D scrub depth measurement

- High-accuracy
- High-throughput
- Repeatable

Category	Target	Minimum	Unacceptable
Precision-to-Total Variation Ratio	<10%	10% < x <30%	>30%
Precision-to-Tolerance Ratio	<10%	10% < x <30%	>30%
Number of Distinct Categories	≥5	NA	<5
Discrimination Ratio	≥4	NA	<4

ACKNOWLEDGEMENTS

Special thanks to:

- MTI:
 - Jarod Hunter
 - Alistair Laing
 - John Caldwell
- MMJ:
 - Hirotada Takahashi
 - Yosuke Kawamata
 - Naoki Tsuchiya

