Power Integrity of Space Transformer on Probe Card

TAE-KYUN KIM, YONG-HO CHO
Microfriend
SANG-KYU YOO
Samsung Electronics
JONG-GWAN YOOK
Yonsei University

June 4-7, 2017
Overview

• Introduction of Probe Card Test
• Basic Study for Power Integrity
• Power Integrity on Probe Card
• Summary
• Future Works
Introduction of Probe Card Test

• Increased Noise Issue at Low Power and High Speed

✓ Supply Voltage decreases for Improving Device Reliability
✓ Low Power Consumption and Operation Requirement
✓ Noise Margin (Reducing of Supply Voltage)
✓ Timing Margin (Increasing of Clock Frequency)

➢ Highly Design Consideration for Power Integrity on Probe Card

Fig. Predicted Trends of the Supply Voltage and Clock Frequency
Introduction of Probe Card Test

- Memory Test Trends for Pad Pitch and Size

Fig. Predicted Trends of Pad Size and Pad Pitch

- Shrink VIA Pad
- Increase Circuit Density
- To be Fine Pitch

➢ Needs for High Density Circuit and Fine Pitch Design on Probe Card

Fig. Probe of Polyimide Circuit (STF)
Fig. Probe of Multilayer Ceramic (STF)
Introduction of Probe Card Test

Different Types of Circuit Design on Space Transformer

<table>
<thead>
<tr>
<th>Type A</th>
<th>Type B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer Ceramic (Space Transformer)</td>
<td>Polyimide Thin Film With Ceramic (Space Transformer)</td>
</tr>
<tr>
<td>- Fine Pitch</td>
<td>- Fine Pitch</td>
</tr>
<tr>
<td>- Circuit Density</td>
<td>- Circuit Density</td>
</tr>
<tr>
<td>- Technology</td>
<td>- Technology</td>
</tr>
</tbody>
</table>

- Multi-Layer Ceramic (Space Transformer)
- Power Plane, Ground Plane, Signal Trace
- Normal Type (Limit of High Parallel Device/DUT)
- Available for using Polyimide Thin Film on STF (Called it ‘Hybrid’ Type)
- Polyimide Circuit + Ceramic (Space Transformer)
- Power (Mesh/Trace), Ground (Mesh), Signal Trace
- Signal/Power Re-distribution on Polyimide Thin Film
- Highly Denser Circuit and Small VIA PAD on Polyimide Thin Film (For Fine Pitch)
Introduction of Probe Card Test

• Power Delivery on Probe Card and Equivalent Circuit

- Low Impedance Path of Current flow at working Frequency
- Target Impedance using Decoupling Capacitor
- Low Inductance Capacitor on Space Transformer
- Design Consideration of Power and Ground
Basic Study for Power Integrity

- Power Impedance Characteristics on Space Transformer (w/o De-cap)

- STF Power Plane (Top/Bottom)
- Power Impedance without De-capacitor
- Similar Characteristics like De-capacitor
- Plane Capacitor and Plane Inductor

Resonance Mode Resonance

\[Z = \frac{1}{j\omega C} \text{ (For Capacitance)} \]
\[= j\omega L \text{ (For Inductance)} \]

Fig. Side View of PDN on Probe Card
Basic Study for Power Integrity

• Decoupling Capacitor and Target Impedance

Various of De-capacitors have own Characteristics at Frequency.
Target Impedance is the ratio of Voltage to Current.
Low Impedance implies Large Capacitance and Low Inductance.

Example) Vdd = 1V, ∆I = 50mA, Voltage Tolerance 5%

\[Z_{\text{target}} = \frac{1 \times 0.05V}{50mA} = 1 \text{ Ω} \]

Fig. Target Impedance with Decoupling Capacitor

TK KIM/YH CHO/SK YOO/JG YOOK
Power Integrity on Probe Card

- **Impedance Analysis for Different Size of Power Plane on Space Transformer**

Top Power Plane / Bottom Power Plane

<table>
<thead>
<tr>
<th>Type</th>
<th>Top Plane Size</th>
<th>Bottom Plane Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>16mm x 16mm</td>
<td>12 mm x 12 mm</td>
</tr>
<tr>
<td>Type B</td>
<td>16mm x 16mm</td>
<td>6 mm x 6 mm</td>
</tr>
<tr>
<td>Type C</td>
<td>16mm x 16mm</td>
<td>6 mm x 12 mm</td>
</tr>
</tbody>
</table>

- **Impedance Analysis for Different Size of Bottom Power Plane**
- **Analysis for Plane Capacitance and Plane Inductance**
Power Integrity on Probe Card

• Impedance Analysis for Different Size of Power Plane on Space Transformer (w/o De-cap)

- As Power Plane Size is large, the Plane Capacitance is increasing.
- As Power Plane Size is small, the Plane Inductance is decreasing.
- As Power Plane Size is small, the Resonance is increasing.
Power Integrity on Probe Card

• Impedance Analysis for Different Size of Power Plane on Space Transformer (with De-cap)

[The Effect of Decoupling Capacitor]

✓ Lower Impedance between Power and Ground Reference Planes.
✓ Reduce/Eliminate Plane resonances.
✓ The Power Impedance depends on the Position.
✓ Top side of De-cap is much more Effective than Bottom side of De-cap.

✓ De-cap can make Low impedance at Working Frequency Regardless of Plane Size.
Power Integrity on Probe Card

- Impedance Analysis for Different Shape of Power Plane on Space Transformer

<table>
<thead>
<tr>
<th>Top Power Plane / Bottom Power Plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
</tr>
<tr>
<td>- Power Top Plane Area : 64 mm²</td>
</tr>
<tr>
<td>- Power Bottom Plane Area : 230 mm²</td>
</tr>
<tr>
<td>Type B</td>
</tr>
<tr>
<td>- Power Top Plane Area : 64 mm²</td>
</tr>
<tr>
<td>- Power Bottom Plane Area : 230 mm²</td>
</tr>
</tbody>
</table>

- Impedance Analysis for Different Shape of Bottom Power Plane
- Analysis for Plane Capacitance and Plane Inductance
Power Integrity on Probe Card

- Impedance Analysis for Different Shape of Power Plane on Space Transformer (w/o De-cap)

- For Different Shape of Power Plane, these have similar Plane Capacitance.

- Plane Inductance have a little differences between these 2 cases.

- The Resonance is Increasing slightly.
Power Integrity on Probe Card

- **Impedance Analysis for Different Shape of Power Plane on Space Transformer (with De-cap)**

[The Effect of Decoupling Capacitor]

- Lower Impedance between Power and Ground Reference Planes.
- Reduce/Eliminate Plane resonances.
- The Power Impedance depends on the Position.
- Top side of De-cap is much more Effective than Bottom side of De-cap.

- De-cap can make Low Impedance at working Frequency Regardless of Plane Shape.
Power Integrity on Probe Card

- Decoupling Capacitor Effect of SSN Voltage on Space Transformer

[Simulation Conditions]
- DRAM DDR2 IBIS Model
- Time Domain Analysis
- Decoupling Capacitor Effect depends on Position.
 - De-cap decreased Voltage Fluctuation and Noise as changing De-cap Position.

- Simultaneous Switching Noise (SSN)
 \[
 \Delta V = L \frac{\Delta I}{\Delta t} \\
 \Delta I : Increase of Maximum Power (Current) \\
 \Delta t : Increase of Clock Frequency
 \]

- SSN cause by Simultaneous Switching Output Buffers
Power Integrity on Probe Card

• Space Transformer Circuit Design Concept on Polyimide Thin Film

- STF Consists of Universal Multi-Layer Ceramic and Polyimide Thin Film.
- Circuit Design on Polyimide Thin Film is made by MEMS Process.
- Probe Structure is built up by 3D MEMS (Layer by Layer)

TK KIM/YH CHO/SK YOO/JG YOOK

SW Test Workshop | June 4-7, 2017
Power Integrity on Probe Card

• PDN Impedance characteristics on Space Transformer (with Polyimide)

[The Effect of Decoupling Capacitor]

✓ Low Impedance between Power and Ground Reference Planes
✓ Reduce / Eliminate Plane Resonances
✓ The Power Impedance depends on the Position.
✓ Top side of De-cap is much more Effective than Bottom side of De-cap.

➢ De-cap can make Low Impedance at working Frequency Regardless of Plane Shape or Size.
Power Integrity on Probe Card

• Decoupling Capacitor Effect of SSN Voltage on Space Transformer (with Polyimide)

[Simulation Conditions]
- DRAM DDR2 IBIS Model
- Time Domain Analysis
- Decoupling Capacitor Effect depends on Position.

- De-cap decreased Voltage Fluctuation and Noise as changing De-cap Position.

Simultaneous Switching Noise (SSN)

\[
\Delta V = L \frac{\Delta I}{\Delta t} : \Delta I : \text{Increase of Maximum Power (Current)}
\]

\[
\Delta t : \text{Increase of Clock Frequency}
\]

- To Reduce SSN, Inductance needs to be Controlled.
Power Integrity on Probe Card

• Measurement Setup to Analyze Power Impedance on Probe Card

 ✓ Vector Network Analyzer (≤8GHz)
 ✓ RF Probe (≤15GHz)
 ✓ Probe Station (2-Dimension)
 ✓ Microscope (x20)
 ✓ Probe Card (PCB+STF Assembly)

 ➢ S-parameter → Z-parameter (Z11)
Power Integrity on Probe Card

- Relationship between S-parameter and Z-parameter

* Reverse Pattern of 2 parameters between Resonance and Impedance
* Resonance makes High Impedance
* S-parameter (S_{11}) \rightarrow Z-parameter (Z_{11})

- Self Impedance (Input Impedance)
 - $Z_{11} \rightarrow$ Dominant

\[Z_{11} = \frac{[(1 + S_{11})(1 - S_{22}) + S_{12}S_{21}]}{[(1 - S_{11})(1 - S_{22}) - S_{12}S_{21}]} Z_0 \]
Power Integrity on Probe Card

- **[Measurement] Power Impedance Analysis on Space Transformer (w/o Polyimide)**

- De-cap can make Low Impedance at working Frequency Regardless of Plane Size or Shape.

- Large number of De-caps affect Resonance and Impedance.

- Matching Target Impedance is available for placing De-cap on Top and Bottom side.

TK KIM/YH CHO/SK YOO/JG YOOK

SW Test Workshop | June 4-7, 2017
Power Integrity on Probe Card

• [Measurement] Power Impedance Analysis on Space Transformer (with Polyimide)

- De-cap can make Low Impedance at working Frequency Regardless of Plane Size or Shape.
- Large number of De-caps affect Resonance and Impedance.
- Matching Target Impedance is available for placing De-cap on Top and Bottom side.
SUMMARY

✓ Basic Study for **Power Impedance** on **Space Transformer** has been performed.

✓ **Power Integrity** has been analyzed both Normal Space Transformer and Polyimide Space Transformer using method of **Simulation** and **Measurement**.

✓ Satisfaction for **Target Impedance** with Decoupling Capacitors which Impedance depends on position and **Top Size of De-cap** is much more effective for **Lowering Impedance**.
FUTURE WORKS

✓ The Electrical Characteristics for Probe Card Circuit designed by Polyimide + Multi-Layer Ceramic (Called it ‘Hybrid type space transformer’).

➢ Could have many Issues because of large number of discontinuity points from Multi-Layer Ceramic to Polyimide Circuit.

- Analysis of **Signal Integrity** (Impedance, Eye-Diagram, Crosstalk...)
- Analysis of **Power Integrity** (Power Impedance, Target Impedance, SSN...)

TK KIM/YH CHO/SK YOO/JG YOOK

24

SW Test Workshop | June 4-7, 2017
Acknowledgements

- SANG-KYU YOO
- JOON-YOON KIM
- YONG-HO CHO
- SUNG-MO KANG
- HUN-SOO KIM
- SUNG-WOONG LEE
- JONG-GWAN YOOK
- HO-SUNG LEE
Thanks for Your Attention!