

SW Test Workshop Semiconductor Wafer Test Workshop

Analysis of probe C.C.C. according to temperature and evaluation method

Sanghun Shin, Seongyeon Wi, Yonggeon Shin, Wonha Jeon Willtechnology Co., Ltd.

June 4-7, 2017

- Background
- Evaluation method
- Evaluation results
- Analysis of evaluation results
- Automated measurement system
- Conclusion
- Acknowledgements

Background

Diversification of application field of semiconductor chips

- Wafer test under harsh environmental condition is required
- Probe card that ensures sufficient characteristics under high temperature is necessary
- Analytical research on the probe characteristics are required
 - Evaluation method (ISMI, MAC)
 - The temp. dependence of probe C.C.C
 - \rightarrow Verifying effect of materials & design
 - \rightarrow Guide to predicting high temp. C.C.C. and selecting probe

T-CCC Formulation

- New CCC formula including temp. variation: T-CCC
 - T-CCC parameters :
 - Resistivity, function of temperature (ρ)
 - Probe length (L)
 - Temperature (T)
 - Area (A)
 - Simplified multiplier (β')

Where *k*, *h* are considered as constant due to:

- Thermal conductivity (k) is unchanged in 25° C to 100° C
- The coefficient of convection (h) is negligible.

June 8-11, 2014

Background

Development of precision probe analyzer

- − Can evaluate various probe characteristics at elevated temperature
 → C.C.C., force, plastic deformation, Cres., durability, etc,.
- High accuracy sensing
 - \rightarrow Temp., force, resistance, current
- Fully automated equipment
 - \rightarrow Test time efficiency
 - \rightarrow Reliable testing and data acquisition

Evaluation method

..........

• Type of probes

- Type A: MEMS cantilever (Ni alloy)
- Type B: φ50µm cobra (Pd alloy)

- Evaluation parameters
 - Probe force
 - ISMI C.C.C., MAC at various temp.
 (25°C ~ 150°C)
 - Equipment: newly developed probe analyzer

SW Test Workshop | June 4-7,2017

Precision probe analyzer

"A" & "B" type probe evaluation results (probe force)

"A" type probe evaluation results (ISMI C.C.C.)

"B" type probe evaluation results (ISMI C.C.C.)

8

Author

"A" & "B" type probe evaluation results (MAC)

Analysis of evaluation results

ISMI C.C.C. & MAC according to temperature

C.C.C(ISMI) according to tempera	ture A	Temp.	"A" type	"B" type	
	A trend	25	896	617	ľ
	Btrend	55	(780)	604	•
200		85	696	555	•
25 50 75 100	125 150	125	421	(522)	• d
Temperature(°C)		150	345	(489)	te

$$C.C.(ISMI) = \beta' \frac{A}{L} \sqrt{\frac{1}{\rho(T)}}$$

 Evaluation result is correlated with above formula (error ≤ 5%)

• (data) is calculated value by the formula

• C.C.C. depends on probe material & design and decreases with the increase in temperature.

• No correlation with the ISMI C.C.C. result.

• MAC also decreases when the temperature rises

- MAC is insensitive to probe design compared with ISMI C.C.C.
- → MAC slope upon temp. of A and B are similar

Author

Analysis of evaluation results

ISMI C.C.C. vs. MAC for a range of temp.

Туре	Temp. [°C]	ISMI [mA]	MAC [mA]	MAC/ISMI x100 [%]	• c
"A"	25	896	281	32	• F
	85	696	191	29	t
"B"	25	617	465	75	• \ ł
	85	555	377	68	-

- In case of "A" type, MAC value dropped sharply compared with "B" type.
- Probe design & fixation methods are more dominant factor than material.
- Vertical structure is more advantageous in evaluation than horizontal (cantilever) structure.
 - \rightarrow Vertical probe is easy to release heat by guide plate

Precision probe test solution

- Precise force measurement Resolution : 0.01g
- PID temperature control

RT, HT test available (Max. 180°C, target Temp. ±0.3°C)

- 4-wire resistance measurement
- X, Y, Z stage control
- Vision Alignment

3 camera system(Top, Side , CCTV)

Source meter & load cell control
 Top camera & load cell
 Temperature control
 Stage, heater, temperature sensor
 Side camera, CCTV camera

(1) Objective lens window **(2) CCTV window ③ Stage control window ④** Stage state window **(5)** Position/recipe set-up window 6 Pin map display window **⑦** Manual run window **(8)** Stage heater control window

- Objective lens(x10)
 - X & Y-axis positioning

- Objective lens(x4)
 - Contact tip & probe first contact
- CCTV
 - Observation from various angle

• Probe position set-up

30

29

28

<mark>2</mark>6

27

25

• Probe recipe set-up

• First contact (Z-axis auto detect) Contact tip moving

- Movement per step and the detection gram can be set depending on the probe type.
- After the 3rd step, 1µm retraction point is recognized as first contact point

Data graph(example)

• Probe force

Author

•

Conclusion

C.C.C. Evaluation & Analysis

- C.C.C. formula of previous presentation is well matched to the experimental result(ISMI).
- Temperature dependence of ISMI C.C.C. & MAC
 - Probe design & fixation methods are more dominant factor than material.
 - For the MAC method, the value is insensitive to probe geometry compared with ISMI C.C.C.

Automated measurement system

- Reliability of measurement result ↑
- Various measurement items can be set by each probe at one time

Acknowledgements

Sanghun Shin, Ph.D. General manager Willtechnology Co., Ltd. (82-31) 240-5580 E: sh.shin@willtechnology.co.kr

Yonggeon Shin Assistant manager Willtechnology Co., Ltd. (82-31) 240-5719 E: yg.shin@willtechnology.co.kr Seongyeon Wi Deputy general manager Willtechnology Co., Ltd. (82-31) 240-5714 E: sy.wi@willtechnology.co.kr

Wonha Jeon Assistant manager Willtechnology Co., Ltd. (82-31) 240-5704 E: wh.jeon@willtechnology.co.kr Jason Lim CEO PLI Co., Ltd. (82-31) 204-7963 E: jason@wpli.co.kr

WILL TECHNOLOGY Wafer Inspection Leading Lab

