

SW Test Workshop Semiconductor Wafer Test Workshop

Advanced Vertical Technologies for Low Damage Probing of Bumps, Pillars, and Pads

Jerry Broz, Ph.D. Darren Aaberge, Shota Hetsugi **Micronics Japan Corp. (MJC)** Tokyo, Japan

Gwen Gerard Jean-Pierre Gibaux **Texas Test Corporation** Hsinchu, Taiwan

June 4-7, 2017

- Background
- MJC MEMS Spring Probe (MSP) for Solder Bumps, Cu Pillars, and Pads
- Qualification of MJC MSP Probe on Cu Pillar Devices at End User
 - End User Objectives
 - Qualification Test Plan
 - Results Summary
- High Volume Manufacturing Validation
- Summary / Conclusions

- Background
- MJC MEMS Spring Probe (MSP) for Solder Bumps, Cu Pillars, and Pads
- Qualification of MJC MSP Probe on Cu Pillar Devices at End User
 - End User Objectives
 - Qualification Test Plan
 - Results Summary
- High Volume Manufacturing Validation
- Summary / Conclusions

Texas Test Corporation (TTC)

WHO WE ARE

Team of former Texas Instruments Engineers.

WHAT WE OFFER

The full range of product and test engineering services.

LOCATION

Headquarters: Dallas, Texas, U.S.A. Product and Test Engineering: Sophia Antipolis, France Manufacturing Operations: Hsinchu, Taiwan and Shanghai, China

Next Gen Requirements Create Probe Challenges

- Bumped devices are moving from 150um pitches to 80um (and smaller) with high numbers of smaller bumps
 - Bump pitch range from 130 to 100um today ⇒ moving into 80um (or less)
 - Bump diameters shrinking from 70um ⇒ sub-30um for certain structures
 - Reducing Cost of SoC Test is driven by large arrays for x256 multi-sites and pin-counts as high as 40,000 probes

• Pitch reductions and minimum allowable damage for assembly and die stacks

- Mobile Devices ⇒ 80um
- Automotive Devices ⇒ 65um
- HBM Memory Devices ⇒ 50um
- Wide I/O and Wide I/O 2 Devices ⇒ 40um

• Electrical performance

- Low and stable CRES for functional test
- Increased CCC for steady state and pulsed current
- High speed performance testing
- Tri-temperature characterization
 - Demanding automotive standards
 - Multiprobe ⇒ -55C to 25C to 200C
 - Same test cell and probecard

Source: B. Mair SW-Test Archives

End User / TTC / MJC

- Background
- MJC MEMS Spring Probe (MSP) for Solder Bumps, Cu Pillars, and Pads
- Qualification of MJC MSP Probe on Cu Pillar Devices at End User
 - End User Objectives
 - Qualification Test Plan
 - Results Summary
- High Volume Manufacturing Validation
- Summary / Conclusions

MJC MEMS Spring Probe for Solder Bumps, Cu Pillars, and Pads

Flip Chip Type Device Multi-die test of devices with Area Array (Bump / Cu Pillar)

MJC MEMS Spring Probe (MSP) Technology

- MEMS fabricated, non-oxidizing barrel & spring
- Proprietary fabrication process for probe architecture
- Spring force is controlled and defined by barrel geometries
- Preload at space transformer for stable contact
- On-site needle replacement capability

End User / TTC / MJC

MJC MEMS Spring Probe for Solder Bumps, Cu Pillars, and Pads

Flip Chip Type Device Multi-die test of devices with Area Array (Bump / Cu Pillar)

MJC MEMS Spring Probe (MSP) Technology

- MEMS fabricated, non-oxidizing barrel & spring
- Proprietary fabrication process for probe architecture
- Spring force is controlled and defined by barrel geometries
- Preload at space transformer for stable contact
- On-site needle replacement capability

MJC MEMS Spring Probe Tip Plunger Geometry

• Plunger material and tip shape can be selected depending on the application.

Solder Bump Probe with MJC MSP Crown Tip Plunger

End User / TTC / MJC

Solder Bump Probe with MJC MSP Crown Tip Plunger

Solder Bump (6gf Probe)

Solder Bump Deformation vs. Applied Stroke (um)

End User / TTC / MJC

Cu-Pillar Bump Probe (RT) with MJC MSP Flat Tip Plunger

Dia_initial = 50um diameter Cu Pillar Bumps with Sn/Ag lead-free solder cap

End User / TTC / MJC

Cu-Pillar Bump Probe (RT) with MJC MSP Flat Tip Plunger

End User / TTC / MJC

Cu-Pillar Bump Probe (HT) with MJC MSP Flat Tip Plunger

Dia_initial = 90um diameter bumps (lead-free solder alloy, Sn/Ag3/Cu0.5) *SMIC_M705

End User / TTC / MJC

MJC MEMS SP-Probe ... In the Field !

• Multisite cards with > 28K pin counts have been successfully installed.

Agenda

- Background
- MJC MEMS Spring Probe (MSP) for Solder Bumps, Cu Pillars, and Pads
- Qualification of MJC MSP Probe on Cu Pillar Devices at End User
 - End User Objectives
 - Qualification Test Plan
 - Results Summary
- High Volume Manufacturing Validation
- Summary / Conclusions

End User Objectives

Improve Sort Performance over Cobra Style Vertical Card

- Probe force consistency and "tune-ability" for uniform probe marks
- Low damage on small bumps
- Probe-to-bump alignment (PTBA)
- Stable electrical performance
- High 1st Pass Yields w/ reduced recovery test

Reduced Cost of Ownership over Cobra Style Vertical Card

- Reduced maintain and increased lifetime performance (MTBR and End of Life)
- Minimize test cell down due to contact related
- Easy repair and simple single pin replacement capabilities

Test Cell Overview

• Equipment

- Tester = VLCT Platform
- Prober = Accretech 300mm Prober
- Probe Type = MEMS SP w/ flat tip plunger
- Probe Card Test Vehicle = 1 x 4 DUT w/ 2140 pins

• Test Conditions

- Test temp = 30C
- OD = Variable as defined during testing
- Cleaning conditions for all testing
 - Octagonal movement
 - Cleaning Overtravel = 100um
 - Cleaning Frequency = 1 clean per 200 wafer TD

Probe Card Test Vehicle and MSP Probe

Property	Specification
Target Material	Cu Pillar Bump
Minimum pitch	95um pitch with full array
Tip shape	Flat Plunger
Contact force	3gf / OD150um
C.C.C. (ISMI 20% force drop)	800 mA
Alignment	<u>+</u> 15um
Planarity	Less than 50um
Temperature	-40C to 90C

End User / TTC / MJC

Qualification Test Plan

• Contact Resistance (CRES) Assessment

- Determine OD to attain stable CRES
- CRES vs. Repeated Touchdowns
- Damage Assessment
 - Bump Damage vs. Overdrive
 - Bump Damage vs. Repeated Touchdowns
- Bin-to-bin Reproducibility
- Stable Correlation Wafer Yield Results
- CRES Determination and Trending
 - MJC MSP Probe vs. Cobra Style Vertical

Overtravel to Attain Stable CRES

Overtravel Applied to Wafer •

- Overtravel Range = 25 to 200um
- Overtravel Increment = 25um
- Single Touchdown

Stable resistance attained @ Overtravel > 50um

SW Test Workshop | June 4-7, 2017

200

175

Overtravel to Attain Stable Correlation Yield

Overtravel Applied to Wafer •

- Overtravel Range = 25 to 200um
- Overtravel Increment = 25um
- Single Touchdown

Stable Correlation Wafer Yield @ Overtravel > 75um

SW Test Workshop | June 4-7,2017

---Pass

← Fail

150

175

---Open

Overtravel vs. Bump Deformation and Damage

- At higher overtravel, the bump are more deformed and tend to higher %-damage.
- At OD = 200um, the %-Damage is significantly less than the specification limit (% Damage < 50%).

Multi-Touchdowns vs. CRES

• Touchdowns Applied to Wafer

- Overtravel = 150um
- Number of TDs = 1 to 6
 - Function Test @ 1TD
 - CRES Test @ 2 to 6TD

• Electrical testing performed across 10-critical pins.

Touchdowns	Electrical Tests Performed
1	2442
2	2013
3	1583
4	1150
5	714
6	281

Stable Contact Resistance @ TD 1 to 6

Multi-Touchdowns vs. Correlation Wafer Yield

• Touchdowns Applied to Wafer at OD = 150um

Number of Touchdowns = 1 to 6 (Function Test @ 1TD w/ retest check; CRES Test @ 2 to 6TD)

1 st Pass Yield	91.5%
1 st Pass Fail	8.5%
1 st Pass Open	0.7%
Retest Recovery	13 Chip

- 1st Pass Correlation Wafer Yield = 91.5%
- Re-Test Recovery ⇒ 13 chips were recovered
- No further recovery for TD = 2 thru 6
- Pass / Fail / Open of each touchdown sequence were well correlated.

End User / TTC / MJC

Multi-TD vs. Bump Deformation and Damage

- After multiple touchdowns at OD = 150um, the bump are more deformed and have higher damage.
- After 2 x TDs, the %-Damage is remains constant and less than the specification limit (% Damage < 50%)

Correlation Determination > 99%

• Test Conditions

- Wafer Overtravel = 150um
- Octagonal movement
- Cleaning Overtravel = 100um
- Cleaning Frequency = 1 clean per 200 wafer TD

Highly significant positive correlation confirmed

End User / TTC / MJC

4 x Wafer Lot % Yield Results

Total Yield Average for 4-LOT

- First Pass Yield Target was attained and confirmed
- MSP card had significantly better first pass yields than a comparable Cobra card.
- MSP card had low recovery rate vs. a high recovery rate observed with the Cobra card.
 - − Recovery Rate for MJC MSP PC \leq 0.13%
 - − Recovery Rate for Cobra PC \ge 0.50 %

MJC MSP vs. Cobra Probe CRES Trending

End User / TTC / MJC

Summary of Qualification

Property	Requirement	Result	Assessment
CRES vs. OD	OD = 75 to 200um Target OD = 150um	Stable CRES at OD ≥ 50um	
Correlation Yield vs. OD	OD = 75 to 200um Targety OD = 150um	Stable Yield at OD ≥ 75um	\bigotimes
Bump Damage vs. OD	% Damage ≤ 50% OD = 75 to 200um	% Damage ≤ 40% Max. OD = 200um	
CRES vs. TD	TD = 1 to 6	Stable CRES at Max. Allowable TD = 6	\bigotimes
Correlation Yield vs. TD	TD = 1 to 6	No additional recovery after 1 st retest	\bigotimes
Bump Damage vs. TD	% Damage ≤ 50 % at OD = 150um	% Damage ≤ 40% Max. Allowable TD = 6	\bigotimes
Test Reproducibility	Statistical Correlation better than 99%	All bins within 0.3% (R ² = 0.999)	\bigotimes
Wafer Lot Result	High 1 st Pass Yield Low Recovery Rate	Recovery Rate ≤ 0.13%	\bigotimes
Resistance Variance	Improved Stability over Cobra Type	Statistically Reduced Variance	\bigotimes

End User / TTC / MJC

- Background
- MJC MEMS Spring Probe (MSP) for Solder Bumps, Cu Pillars, and Pads
- Qualification of MJC MSP Probe on Cu Pillar Devices at End User
 - End User Objectives
 - Qualification Test Plan
 - Results Summary
- High Volume Manufacturing Validation
- Summary / Conclusions

High Volume Manufacturing Validation

Production Qualification Overview

- More than 5000 production device wafers were split across multiple test cells
- Split Lot Ratio ⇒ MJC MSP (15%) and Cobra Style (85%)
- Production Metrics comparison for MJC MSP vs. Cobra Style
 - First Pass Yield Improvement ⇒ 0.37% increase in FPY over Cobra Style
 - Significant Reprobe Rate Reduction across 5000 wafers:

Card Type	Average	StdDev
COBRA	0.34%	0.83%
MJC MSP	0.09%	0.08%

- Avg. 2.69% wafer test time reduction was realized with MJC MSP Probe

- Background
- MJC MEMS Spring Probe (MSP) for Solder Bumps, Cu Pillars, and Pads
- Qualification of MJC MSP Probe on Cu Pillar Devices at End User
 - End User Objectives
 - Qualification Test Plan
 - Results Summary
- High Volume Manufacturing Validation
- Summary / Conclusions

Summary / Conclusions

- Bumps, Pillars, and Pads of next-gen devices continue to shrink in size for higher pin counts with tighter pitches requiring precise and low force contact under various test conditions.
- MJC MEMS SP has "tune-ability" of probe force, plunger shape, and contactor metallurgy.
 - Engineered low probe forces facilitate high pin counts with reduced %-damage
 - Tip geometries designed for CRES stability with low %-damage after multiple touchdowns
 - Contactor shapes and metallurgies optimized for high CCC, low CRES, and %-Yield stability
- Under HVM conditions at End User, MEMS SP had superior performance over Cobra Style probe technologies.
 - A 0.37% improvement in First Pass Yield
 - Significantly reduced reprobe and recovery rates
 - Overall 2.69% reduction in average wafer test times
- Future work
 - Production probe card performance and lifetime characterization
 - Elevated temperature (125C) test conditions

Acknowledgements

- End User Probe Process Team (Special Thanks !)
- Ardentec Probe Process Team
- Philippe Cavalier (Texas Test Corporation)
- Tom Stewart (Texas Test Corporation)
- T.T. Kanenari (Micronics Japan Co., LTD)
- Hideo Kuroyanagi (Micronics Japan Co., LTD)
- Keita Kudo (Micronics Japan, Co., LTD)