

SW Test Workshop Semiconductor Wafer Test Workshop

A Novel Superior Low Force Probe Geometry Enabling Probing on Micro Bumps with Very Small Pitches

Matthias Schnaithmann (FM) Achim Weiland (FM) Gunther Böhm (FM) Franz Steger (TI)

June 4-7, 2017

Overview

- History of the Buckling Beam
- Striped Beam Principle
- Design Requirements
- Qualification Test Results
- Preliminary Production Test Results
- Summary & Follow-On Work

History of the Buckling Beam

First patent: US 3.806.801 Ronald Bove/IBM 1972

Buckling beam: fundamental principle Modular testhead for multilayer ceramic 100mm (4^{''}) size, 40.000 probes, 250µm pitch, Feinmetall 1992

Changing pitch over time

Matthias Schnaithmann

Development of Contact Probes

Challenges of Future Contact Probes

Low force:
Small damages to pads and bumps
Pad over active area probing

Short length:
È Lower el. resistance
È Better heat dissipation
È Lower inductance
È Easier probe assembly

Higher CCC

Matthias Schnaithmann

Buckling Beam Principle Mechanical Limits of a Single Buckling Beam

Matthias Schnaithmann

Buckling Beam Principle Electrical Limits of a Single Buckling Beam (FE-Simulation)

Matthias Schnaithmann

Schnaithmann

SW Test Workshop | June 4-7,2017

7

Striped Beam Principle Comparison of Design Parameters

Matthias Schnaithmann

Single Buckling vs. Striped Beam Principle Probes with same force

Matthias Schnaithmann

Single Buckling vs. Striped Beam Principle Probes with same force

Matthias Schnaithmann

Striped Beam Principle Probe family with same length and force

Parameter	2 Stripes	3 Stripes	4 Stripes
Probe thickness x width	38 µm x 50 µm	46 μm x 69 μm	57 µm x 85 µm
El. resistance	20 mΩ	13 m Ω	9 m Ω

Same length, Same force

à Different pitches à Different resistances

Matthias Schnaithmann

Striped Beam Principle

Striped Beam Principle - Advantages

- High variety of designs possible
 à Product family
 of same force and length possible
- Short length
- High current
- Low force
- Force doesn't change with lifetime

Striped Beam Principle

Striped Beam Principle - Advantages

- High variety of designs possible
 à Product family
 - of same force and length possible
- Short length
- High current
- Low force
- Force doesn't change with lifetime

Qualification Test Results

Mechanical simulation

Matthias Schnaithmann

Qualification Test Results

Experiment vs. Simulation – Contact Force

Matthias Schnaithmann

SW Test Workshop | June 4-7,2017

14

Pitch (μm) 80

CCC (mA)

Mech. Reliability

700

600 500 Probe length

(*mm*)

Force

Schnaithmann

SW Test Workshop | June 4-7,2017

Pitch (um)

CCC

Probe length

Preliminary Production Test Results

Test vehicle: Texas Instruments TPS63070

- 2-V to 16-V Buck-Boost converter with 3.6-A switch current
- Low pin count (23 pins)

Probe Test Parameters

- ETS364 with 6.2" probe card
- UF3000 prober (300 mm wafers)
- Octal side (2x4 tight matrix)
- Probe on μ-Bump (diameter ~90 μm)
- Different currents (up to 2 A could be applied)
 Different temperatures (30 °C 125 °C)

Preliminary Production Test Results

Tri-Temp results (Contact resistance per temperature and site)

Matthias Schnaithmann

Preliminary Production Test Results

BUMP deformation @ different temperatures

emperature: 30 °C		Impact diameter Large Bump	Impact diameter Small Bump
		26 +/- 1 µm	16 +/- 1 µm
		29 +/- 2 µm	18 +/- 1 µm
85 °C		31 +/- 3 µm	22 +/- 2 µm
125 °C		<i>Worst case damaged bump surface <10%</i>	

Matthias Schnaithmann

Summary

applications

SW Test Workshop | June 4-7,2017

Signal A = SE1

Mag = 31 X

W41_H1 1350 PP

Ē

Date :19 Oct 2016

Worst case damaged bump surface <10%

SW Test Workshop | June 4-7,2017

1 mm

18

EHT = 3.00 kV

WD = 34.5 mm

125 °C

Matthias

Schnaithmann

Matthias Schnaithmann

Follow-On Work

Next Development Steps

Probes for pads à 50µm Pitch
 à Probe family
 with same length and force

– Probes for pads à 40µm Pitch

– High current applications

Matthias Schnaithmann

Acknowledgement

Lutz Benedix FEINMETALL GmbH Head Design

Thank you!

FEINMETALL GmbH

Peter Stolp FEINMETALL GmbH

Panagiotis Vlachakis -

Head & Probe Assembly, Mechanical Reliability Tests

Mechanical FE Simulation

Head & Probe Assembly,

Mechanical Reliability Tests

Jörg Behr FEINMETALL GmbH

Annelene Dethlefsen - FEINMETALL GmbH

Thermal FE Simulation, Force & CCC Measurements