

SW Test Workshop Semiconductor Wafer Test Workshop

A Full-Automatic Test System for Characterizing Large-Array Fine-Pitch Micro-Bump Probe Cards Erik Jan Marinissen Jörg Kiesewetter **Eric Hill Ferenc Fodor Ken Smith** Bart De Wachter **Cascade**Microtech® unec A FORMFACTOR COMPANY Leuven, Belgium Thiendorf, Germany Beaverton, OR, USA June 4-7, 2017

I.INTRODUCTION Direct Micro-Bump Probing

- Functional interconnects of 3D-stacked dies are formed by large arrays of fine-pitch micro-bumps
- Impossible to probe with conventional probe technology
 - Cantilever probes : cannot handle arbitrary arrays
 - Vertical probes : cannot handle the fine pitch
- Options for pre-bond test
 - I. Skip pre-bond test: poor compound stack yield; higher cost
 - 2. Dedicated pre-bond probe pads: extra design, area, test time, post-bond load; and micro-bumps remain untested

Use advanced probe technology to probe micro-bumps

5

3D-T

micro-bumps -

Related Prior Work

- SWTW'II: Marinissen et al. (imec + Cascade Microtech)
 Imec and Cascade started collaboration, defined probe targets
- ITC'II: Smith et al. (Cascade Microtech + imec)
 First collaboration results, mainly on probe technology
- SWTW'I3: Böhm et al. (Feinmetall + Team Nanotec + imec + FH + CM) Silicon crown tips, embedded in vertical probe card with TSVs Most Inspirational Presentation Award, but no product follow-up
- ITC'I4: Marinissen et al. (imec + Cascade Microtech + TU Delft)
 - WIOI-IBank: good R_c ; no impact on bond yield; cost-effective
 - But... (i) only I Bank and (ii) only daisy-chains of 30 micro-bumps

- I. Introduction
- 2. Wide-I/O Micro-Bump Arrays
- 3. Vortex-2 Test System
- 4. Probe Technology
- 5. Test System Software
- 6. Experimental Results
- 7. Test Cost Comparison
- 8. Conclusion

2. WIDE-I/O MICRO-BUMP ARRAYS What Do We Want To Probe?

Micro-Bump Probe Targets

- imec's PoR @40µm pitch
- Today's advanced industry practice
 Wide-I/O Micro-Bump Arrays
- WIO1: 1,200 micro-bumps @50/40µm pitch
- WIO2: 1,752 micro-bumps @40/40µm pitch

25µm

Top

40um

Bottom

15µm

5µm

1µm 3.5µm

25µm

5µm

Ø25µm Cu

CII

25µm

Ø15µm Cu/Ni/Sn

JEDEC STANDARD

Mr 102 (Widebo

- I. Introduction
- 2. Wide-I/O Micro-Bump Arrays
- 3. Vortex-2 Test System
- 4. Probe Technology
- 5. Test System Software
- 6. Experimental Results
- 7. Test Cost Comparison
- 8. Conclusion

3.VORTEX-2 TEST SYSTEM Vortex-2 Test System

3.VORTEX-2 TEST SYSTEM Vortex-2: In-Line in imec's Fab-2

3.VORTEX-2 TEST SYSTEM Cascade Microtech CM300 Probe Station

- Wafer Handling
 - Full-automatic wafer loader (200/300mm)
 - Manual loading of tape frames
- Thermal Control System: -60...+200 °C
- Four Cameras
 - (1) eVue ↓ (3) Chuck 1
 (2) Platen ↓ (4) ContactView ™ →
- Platen Camera.
- Microscope Bridge Removed for Test Head
 - Probe alignment with Platen and Chuck cameras only
 - Chuck needs to move between 'Align' and 'Probe' positions

3. VORTEX-2 TEST SYSTEM

National Instruments Semiconductor Test System

- PXI Rack: programmable Switch Matrix
 - 4 input rows driven by DMM
 - 9×136 = 1,224 output columns
- Two and four-point R measurements

3.VORTEX-2 TEST SYSTEM Grounding the FET-Based Switch Matrix

- Wide-I/O Switch Matrix is composed of nine concatenated switch modules
 - 9×(4×136)= 4 rows × 1,224 columns
- NI's PXI-2535 FET-based SMX
 - Benefits
 - Low cost and unlimited life-time
 - All 544 switches can be "on"
 - Drawbacks
 - Significant leakage current
 - Charge injection during power-up

but leaves fix to user We suggested programmable GND

- as feature in new NI SMX modules
- For now, we implemented aprog'able GND from probe card into SMX

3. VORTEX-2 TEST SYSTEM

Measurement Routines and Parasitics

- I. Introduction
- 2. Wide-I/O Micro-Bump Arrays
- 3. Vortex-2 Test System
- 4. Probe Technology
- 5. Test System Software
- 6. Experimental Results
- 7. Test Cost Comparison
- 8. Conclusion

4. PROBETECHNOLOGY Pyramid[®] Rocking Beam Interposer Probe Cores

4. PROBETECHNOLOGY From Core-I/O to Probe Tip

- I. Introduction
- 2. Wide-I/O Micro-Bump Arrays
- 3. Vortex-2 Test System
- 4. Probe Technology
- 5. Test System Software
- 6. Experimental Results
- 7. Test Cost Comparison
- 8. Conclusion

5. TEST SYSTEM SOFTWARE Automatic Test Generation Inputs

- Test System Description look-up table
 - Per line : probe number; core-I/O;
 - Example: 3;

- Probe Core Description
 - Key parameters, incl. probes layout and recommended/max OT

IMEC-36
WIO2-1ch
1
6
73
40
150
150
0
0

SH02;

pogo block/pin; switch matrix/column S13_H08; SMX5_COL14

PROBE	CORE IO	POGO PIN	SMX_COL
1	WH23	\$19_G05	SMX7_COLI13
2	SD02	\$13_M06	SMX5_COL86
3	SH02	\$13_H08	SMX5_COLI4
4	SD03	\$13_M05	SMX5_COL90
5	SH03	\$13_H07	SMX5_COLI0
6	SD04	\$13_M04	SMX5_COL94
7	SH04	\$13_H06	SMX5_COL6
8	SD05	\$13_M03	SMX5_COL98
9	SH05	\$13_H05	SMX5 COLLID
10	SD06	SI3 MOD	
	SH06		

5. TEST SYSTEM SOFTWARE

Many Test Results: Data Abstraction & Visualization

- I. Introduction
- 2. Wide-I/O Micro-Bump Arrays
- 3. Vortex-2 Test System
- 4. Probe Technology
- 5. Test System Software
- 6. Experimental Results
- 7. Test Cost Comparison
- 8. Conclusion

imec Test Chip Designs with Micro-Bumps

BMB: Blanket Micro-Bump

- All micro-bumps shorted by blanket Cu
 - Arrays: 50/50µm pitch, WIOI, WIO2
 - Banks with 0/1/2 dummy rings
- 9,421,272 functional micro-bumps/wafer

Vesuvius-2.5D

WIO1: 1,200 bumps

40 daisy-chains of 30 micro-bumps each

PTCU/W: Processing Test Chips

- WIO2 I bank: 438 micro-bumps
- Embedded micro-bumps: zero height
- Micro-bumps pairwise connected through MI in diagonal fashion

Incoming Inspection on Blanket Wafer

- Increase over-travel from 0 to OT_{max}
- Perform 'Probe Check' routine: for all probes p∈P do { two-point R measurement p vs. P\{p} 60 }
- Determine
 - Open probes, if any: R > R_{MAX}
 - FtL: First-to-Last OT; here 40µm
 - Recommended OT; here 100µm
 - Too low: poor contact
 - Too high: reduced lifetime

6. EXPERIMENTAL RESULTS Probe Tip Cleaning

- Recommended cleaning set-up
 - Substrate : ITS Probe Lapping Film, I µm grit particle size
 - Recipe : 60% of probing over-travel, 10 touch-downs
 - Interval :After 50 touch-downs

Before Tip Cleaning

Contact Resistance Dependent on Bump Metallurgy

- Sample size: 20,900 37,620 measurements per wafer
- Pass/Fail threshold $R_{\rm TH}$ set at 50 Ω
- Large variation: due to parasitic R in test system and probe core
- Small variation: micro-bump metallurgy
 - D05: Cu
 - D09: Ni
 - **D02:** Co
 - DI4: Cu +20nm NiB
 - D09: Cu +40nm NiB

Probe-To-Pad Alignment (PTPA) Accuracy

- **PTPA Accuracy**: determined by (1) probe station and (2) probe core
 - Measure probe-mark errors in all four corners of micro-bump array

I. Probe Station Accuracy 🔲

- Equals error of BL probe mark, as BL tip is main probe training location
- Error is chuck-position dependent

2. Probe Core Accuracy

- Translate errors such that BL= (0,0)
- Errors other corners due to probe core
- These errors are chuck-pos independent

Probe Station's PTPA Results

- Cannot Use Top-View Camera
 - No microscope bridge
 - Probe cores 'non see -through'

Platen + Chuck Cameras Only

- Align' ↔ 'Probe': chuck moves
- Rely on Compensation Matrix
- Compensation Matrix recalibrated in Jan and May 2017

Thermal Control required for accurate PTPA

Stage Test Platen Cam After Service May 2017

(2 µm, 4 µm]

0

-

Probe Cores' Grid Accuracy Results

• WIO2-I Bank

0

0

• WIOI-4Bank

Cor-	ldeal (µm)		Actual (µm)		Error (µm)		Relative Error	
ner	x	у	x	у	x	у	x	у
BL	0.00	0.00	0.00	0.00	0.00	0.00	0.00%	0.00%
BR	5250.00	0.00	5253.93	-0.99	3.93	-0.99	0.07%	-0.19%
TR	5250.00	520.00	5255.65	516.86	5.65	-3.14	0.11%	-0.60%
TL	0.00	520.00	1.13	516.58	1.13	-3.42	0.02 %	-0.66%

6. EXPERIMENTAL RESULTS Probe Marks on Various Micro-Bumps at 40µm Pitch

6. EXPERIMENTAL RESULTS Probe Mark Impact on Stack Interconnect Yield

- Probe Marks
 - On Cu, Co, Ni: very small
 - On Sn: can be reflowed away

WIOI Bank	Α	В	С	D
Top die probed	×	\checkmark	\checkmark	×
Bottom die probed	\checkmark	\checkmark	×	×
Interconnect yield	100%	100%	100%	100%
DC resistance R _{dc}	32.0 Ω	42.4 Ω	45.0 Ω	33 .ΙΩ

Experiment on Vesuvius-2.5D with WIOI-4Banks

- Probed per bank in all four combinations of top/bottom die yes/no probed prior to stacking
- No impact on stack interconnect yield observed [Marinissen et al. – ITC'14]

Ch.	DC	Stack 1	Stack 2	Stack 3	Stack 4	Stack 5	Stack 6	Stack 7	Stack 8
А	1	24.8	25.2	25.7	29.3	31.7	34.7	38.7	30.9
А	2	29.7	36.6	37.6	41.0	40.6	106.0	34.7	35.2
А	3	24.7	25.7	27.0	30.5	25.2	25.2	26.3	30.1
А	4	25.8	26.4	27.4	27.6	26.9	27.2	27.6	26.9
А	5	24.0	23.7	25.0	25.0	24.1	26.5	28.1	28.1
А	6	29.4	29.1	30.3	32.3	30.5	33.5	33.7	33.7
А	7	26.8	28.1	27.7	27.6	28.0	27.2	27.9	27.6
А	8	30.4	29.9	32.9	32.1	32.0	32.4	32.1	31.9
А	9	38.2	35.2	40.6	39.1	46.3	42.2	41.6	42.4
А	10	34.3	30.1	33.3	33.3	33.5	35.2	34.7	37.2
В	1	36.3	26.4	39.3	39.4	43.0	46.0	53.7	42.0
В	2	51.3	31.2	44.4	50.3	51.4	53.1	47.3	46.9
В	3	35.8	37.6	38.7	40.4	36.8	36.8	37.5	37.3
В	4	36.8	38.0	39.2	39.6	38.3	39.0	39.5	38.6
В	5	35.3	34.9	36.5	36.5	35.9	36.6	38.7	36.8
В	6	40.4	40.2	43.4	44.1	42.2	44.0	44.8	44.4
В	7	37.9	39.8	39.6	39.3	39.1	38.7	39.8	39.3
В	8	41.5	41.5	44.9	44.2	43.6	43.8	44.5	43.4
В	9	48.2	47.9	51.8	51.5	53.7	54.3	52.9	53.5
В	10	51.1	41.8	44.6	46.1	46.9	51.3	46.3	45.1
С	1	58.4	51.8	78.6	73.5	59.4	98.9	56.0	52.2
С	2	46.5	43.2	44.6	47.4	48.0	49.7	49.4	46.4
С	3	40.0	37.7	41.3	41.1	41.3	41.1	42.7	38.9
С	4	45.1	44.7	49.1	48.2	50.7	51.1	50.0	49.5
С	5	41.0	39.6	43.4	42.6	42.1	41.7	42.4	41.5
С	6	37.5	38.5	38.8	38.8	38.7	38.4	39.0	38.4
С	7	41.1	41.0	42.9	43.6	48.5	44.8	45.3	45.2
С	8	36.9	37.1	38.5	38.2	44.5	38.1	40.1	38.4
С	9	40.0	41.0	42.7	42.4	41.7	41.9	42.4	41.8
С	10	40.2	42.7	42.5	45.3	45.8	40.8	41.5	40.6
D	1	38.4	53.4	67.0	64.5	53.4	62.3	47.8	41.4
D	2	32.4	29.7	32.4	35.4	36.9	35.2	35.9	34.6
D	3	29.5	26.9	29.2	29.0	29.9	30.8	29.5	31.6
D	4	30.8	33.4	38.0	37.5	38.3	39.6	38.3	38.5
D	5	29.8	29.5	31.2	30.7	40.4	30.2	30.5	30.4
D	6	26.1	26.2	27.0	27.9	26.6	26.6	27.1	26.9
D	7	30.1	30.7	30.9	31.8	31.2	33.0	34.7	33.8
D	8	25.7	25.5	26.7	26.5	26.7	26.5	27.5	27.4
D	9	29.5	29.7	30.7	31.0	29.7	30.6	30.4	30.2
D	10	28.8	30.0	31.1	30.7	30.5	30.9	29.9	29.1

- I. Introduction
- 2. Wide-I/O Micro-Bump Arrays
- 3. Vortex-2 Test System
- 4. Probe Technology
- 5. Test System Software
- 6. Experimental Results
- 7. Test Cost Comparison
- 8. Conclusion

7. TEST COST COMPARISON

Cost Modeling for Single-Site Testing

Cost Comparison

- Case:Vesuvius-2.5D
- Two active dies on top of passive interposer

Three Scenarios

- I. No pre-bond test
- 2. Extra pre-bond pads 📕
- 3. Micro-bump probing

Payamatak	Inter-	I. No Pre-Bond	2. Extra Pads	3. Bump Probe
	poser	Dies I+2	Dies I+2	Dies I+2
Pre-bond test contacts / die	n.a.	n.a.	only I 20	I,200
300mm wafer cost	\$ 700	\$ 3,000	\$ 3,000	\$ 3,000
Die area	200 mm ²	65.61 mm ²	6 <mark>6</mark> .61 mm²	65.61 mm ²
Gross die / wafer	302	968	9 <u>53</u>	968
Defect density	0.1 /cm ²	0.0-1.0 /cm ²	0.0-1.0 /cm ²	0.0-1.0 /cm ²
Die yield	84.52%	100-65.76%	100-65. <u>48</u> %	100-65.76%
Pre-bond fault coverage	n.a.	<u>0</u> %	99 %	99%
Pre-bond test time / die	n.a.	<u>0</u> s	<u>100</u> s	10 s
Pre-bond probe card cost / die	n.a.	0	0	\$ 0.50
Pre-bond test cost/die	n.a.	\$ 0.00	\$ 5.00	\$ 1.00
Stack interconnect yield	100%	99 %	99%	9 <u>8</u> % ?
Final fault coverage	100%	99%	99%	99%
Final test time / die	ls	10 s	10 s	10 s

7. TEST COST COMPARISON 3D-COSTAR Cost Modeling Results

- I. No Pre-Bond Test Only acceptable if pre-bond die yield is high
- 2. Extra Pre-Bond Pads 10× test time increase ⇒ test significant cost-add
- 3. Micro-Bump Probing expensive advanced probe card is minor overall cost contributor No difference in product

quality due to Final Test!

- I. Introduction
- 2. Wide-I/O Micro-Bump Arrays
- 3. Vortex-2 Test System
- 4. Probe Technology
- 5. Test System Software
- 6. Experimental Results
- 7. Test Cost Comparison
- 8. Conclusion

- Unique system for large-array fine-pitch micro-bump probing based on Cascade Microtech CM300
 - At imec routinely used for micro-bump arrays @40/50µm pitch
 - Temperature control and good calibration required
 - PTPA $\leq \pm 2.5 \mu$ m: appears sufficient even for 20 μ m-pitch micro-bumps
- Cascade Microtech Pyramid[®] RBI probe cards/cores
 - Advanced MEMS-based thin-film probe technology
 - Large arrays down to 40µm pitch
 - Contact resistance 0.1-2.0 Ω ; parasitic resistance in space transformer ~5 Ω
 - Low force \Rightarrow Limited probe mark \Rightarrow No impact on stacking yield observed

8. CONCLUSION

2-0-1-7

Challenges and Solutions for Micro-Bump Probing

SolutionsAdvanced MEMS-type probe cards
Accurate, thermally-stable prober
Large #channels; hard-docking
 Automated data visualization
 Parasitics, over-travel, tip cleaning
Dependent on bump metallurgy
Low-force probe cards
Reflow for soft Sn micro-bumps
 Advanced probes are expensive
 But alternatives are more expensive

8. CONCLUSION Acknowledgments

່ເມງອ

IMEC (Belgium)

Filip Beirnaert, Eric Beyne, Kristof Croes, Miroslav Cupak, Jaber Derakhshandeh, Fred Loosen, Jonathan Mas, John Slabbekoorn, Michele Stucchi, Geert Van der Plas

Cascade Microtech (Oregon / Germany)

Axel Becker, Mario Berg, Claus Dietrich, Jens Fiedler, Juliane Grossmann, Ulf Hackius, Torsten Kern, Frank Thiele

National Instruments (*Texas / Belgium / the Netherlands*) Brandyn Adderly, Thierry Coppens, Joris Donders, Peter Engelbracht, Hank Lydick, David Oka, Ron Wolfe, Jennfong Wu, Karsten van Zwol

Reid-Ashman (Arizona / Germany) Harald Kupka, Scott Nelson

Delft University of Technology (the Netherlands)

Said Hamdioui, Mottaqiallah Taouil

Part of this work is performed in the project SEA4KET (www.sea4ket.eu), sub-project 3DIMS and receives funding from the EU's 7th Programme under grant agreement No. IST-611332

embracing a better life

