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Diversified Memory Market
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Industry Trends
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Industry Trends
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Implications for wafer test
– Smaller pad size
– Thinner pad metal
– Increased test insertions
– Higher die-per-wafer / increased parallelism



Generic Wafer Test Requirements
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Scrub Depth < 
Pad Thickness

All Probe Marks Inside 
the Pad Boundary
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Continuity

Dual Temperature 
Capability



• Balance scrub depth vs. scrub size to meet pad dimension 
reductions for devices with a breadth of physical properties

The Challenge
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Experiment
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Advanced Probe Cards for Memory Devices
• “Micro-Cantilever” MEMS

• Full 300mm Probe Arrays

• >100,000 Probes per Array
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MEMS Probe Key Characteristics
• MEMS “Scrub” – Vertical + Lateral Pad Contact

– Scrub Ratio (Length vs. Overdrive)
– Probe Force
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Evaluation Items
• Micron and MJC evaluated the following:
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Evaluation Item Variables Measured Value

Scrub Characteristics
Single Contact

Overdrive
Tip Size

Length
Width
Depth

Scrub Characteristics
Multi-Contact

Overdrive
Tip Size
Contact Count

Length
Width
Depth



Conditions and Factors
• Four different probe tips were evaluated on three different 

devices
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Item Value
Wafers Device A, B, C 
Prober 300mm Wafer Prober
Temperature Room Temperature

Probe Tip Type

1:  Baseline
2:  +70% Tip Area
3:  +13% Probe Force
4:  +13% Probe Force, +70% Tip Area



Device Probe Pad Characteristics
• Pad Thickness Comparison

– Other properties (Pad Material, Surface Oxide, Hardness, Modulus) do not differ 
significantly
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Pad

Device A
Pad Thickness 1.0x

Underlayer

Device B
Pad Thickness 6.3x

Device C
Pad Thickness 1.0x



Device Probe Pad Microstructure Comparison
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Device A
Grain Size: 1.0x

%GB > 15°:  50.0x

Device C
Grain Size: 1.3x
%GB > 15°:  1.0x

Device B
Grain Size: 4.6x

%GB > 15°:  29.0x



Results
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Char Results – Scrub Length, Single Contact

• Scrub Ratio characterization to determine AOT/POT is device-dependent
• Unpredictable effect on scrub length of changing tip characteristics
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Operating OD 

Device A Device B Device C

Baseline
+70% Tip Area

+13% Probe Force
+13% Force, +70% Area



Char Results – Scrub Depth, Single Contact

• Scrub depth response of a given probe tip varies by pad thickness
• Tip size is the dominant factor in determining scrub depth
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Operating OD 

Device A Device B Device C

Baseline
+70% Tip Area

+13% Probe Force
+13% Force, +70% Area



Scrub Mark Images @ Operating Overdrive
Baseline +70% Tip Area +13% Force +13% F, +70% A

Device A

Device B
“The Bulldozer”

Device C
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Char Results – Punch Through, Multiple Contacts

• Scrub depth approaches a limit at ~80-90% of pad depth
• Force characteristic has little to no impact on scrub depth.
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Device A Device B Device C

Baseline
+70% Tip Area

+13% Probe Force
+13% Force, +70% Area



Punch Through Observed on Device A
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Punch Through @ 
Maximum Overdrive

Baseline
+70% Tip Area
+13% Probe Force
+13% Force, +70% Area



Scrub Depth Images – MJC Confocal Scope
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Scrub 
direction

Scrub 
direction

Device B, Baseline Probe Tip

Single Contact

Multi-Contact

Device A, Baseline Probe Tip

Multi-Contact +

Multi-ContactPunch Through



Additional Considerations
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What If…Pad Metal Becomes Thinner?

• Potentially punch through on the first 
contact with small tips

• Large tips may not punch through 
(assuming pad hardening occurs); 
marginal at best
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Pad thickness 
reduction of 30%

Baseline
+70% Tip Area
+13% Probe Force
+13% Force, +70% Area

Device A @ Operating OD



What If…Testing Temperature Increases?

• Scrub depth shows high temperature dependence; length does not
• Scrub depth rate of increase slows at high overdrive
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Ambient
High Temp

Ambient
High Temp

Operating OD 

Device A, Probe Tip: +13% Force, Baseline Area



What If….Pad Size Shrinks?

• Larger tip area = reduced scrub depth, but edge margin is strained
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Summary
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Summary
• Scrub characterization of probe types is critical to understanding 

advanced probing processes
– Depth and length can vary significantly across a breadth of similar devices

• To meet the challenge of reduced pad dimensions, an array of 
probe tip offerings from probe card suppliers is necessary
– Varying tip area for optimized scrub depth
– Varying tip size for optimized pad edge margin
– The “right” balance of tip area vs. tip size
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The Gap
• Innovation Required:

– Can the probe card industry develop a one-size-fits-all probe tip for 
tomorrow’s device requirements?

– Or, can probe card suppliers cost-effectively produce an array of probes 
tailored for specific device properties?
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Final Thoughts
• Cooperative partnerships are critical in developing solutions for 

next-generation probing processes
– “Thank You” from Micron to MJC and MEC for partnering in this study

• Acknowledgements
– Micron Technology:  Kurt Guthzeit, Alistair Laing
– MJC:  Miho Kitayama, Yuma Tanaka
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