

Cleaning Material Evaluations on Advanced MEMS Cantilever and Vertical Technologies

June 3-6, 2018

Vincent Ellis

• Overview

CRES Evaluations

- MEMS Cantilever Material Conversion
- MEMS Vertical Spring Recipe Optimization
- Cost Savings
- Summary of Findings

Wait...What's That Mean?

- MEMS: Microelectromechanical Systems
- CRES: Contact Resistance

Overview

- Automotive = Quality + Reliability
 - Automotive requirements pushes probe to expand test temperature ranges, driving more test insertions & higher multisite
- Advancements in Probe Card Technology and Probe Process are Necessary to keep up with Automotive Demand
 - Probe card Complexity

Maintenance of Probe Card becomes Critical to Maximizing the Investment

- Cleaning is required to control Contact Resistance (CRES)
- Online probe card cleaning reduces Tip Length/Lifetime
- Cleaning material and methods become critical to protecting the investment

Let's Talk Resistance

- Contact Resistance (CRES) is Critical to Probe
 - Occurs as probe tip and bond pad come in contact
- Main Factors to Influence Contact Resistance
 - Contamination on probe tip ex: debris or oxides
 - Probe tip contact surface size, texture (roughness) and probe force
 - Probing temperature affects oxidation rate and scrub size
- Lateral Movement of Probe Scrub Breaks Through Oxide on Bond Pad Surface
 - Cantilever and vertical probes scrub
 - Scrubbing action produces contaminants/debris

Metals Influence Amount of Scrub Debris

- Metallurgies of bond pads change how probe needle scrubs
 - Softer Bond pad = more scrub debris
 - Harder Bond pad = less scrub debris

BOAC Pad (NiPd)

Vertical on Al Pad

Cantilever on Al Pad

- Debris on probe prevents optimal contact between probe needle and pad

Contact Resistance impacted by scrub

<u>Clean Probe Tip</u>

Debris on/around Probe Tip

SW Test Workshop | June 3-6, 2018

•

Types of Online Cleaning Materials

Lapping film

Sandpaper type material

Removes contaminants from probe contact surface

Polyurethane Foam Material

- Spongy type material
- Allows vertical probe to penetrate surface, keeping probe radius shape

Polymer Based Material

- Collects contaminates from probe tip but not abrasive
- Extends life but will not remove all contaminants

Cleaning Materials

 In this presentation, we will focus on Advanced MEMS Cantilever and Vertical springs and how optimizing online cleaning recipes/materials maximizes lifetime/performance

• Overview

CRES Evaluations

- MEMS Cantilever Material Conversion

- MEMS Vertical Spring Recipe Optimization

• Summary of Findings

MEMS Cantilever Cleaning Material Conversion

- MEMS Cantilever Spring evaluated is FormFactor's T11 probe on T11 probe solution applied used on high volume/multisite device where CRES stability is critical
- T11 probe cards introduced to TI using polymer based cleaning material
- This evaluation will consider replacing polymer based material with a lapping film

Different Strokes for Different Folks

Polymer Material

 Allows Probe to Penetrates Surface Collecting Debris
 <u>Cleaning Process</u>

Probe

robe Slide

Lapping Fil

Lapping Film

Different Strokes for Different Folks

Polymer Material

Allows Probe to Penetrates Surface Collecting • Debris **Cleaning Process**

Lapping Film Probe Slides Across Surface Scraping Away • Debris **Cleaning Process**

Probe Probe Probe Probe Probe Probe **Polymer Material** Lapping Film **Polymer Material** Lapping Film **Polymer Material** Lapping Film **Probe with Debris Probe After Clean Probe After Clean Probe with Debris** SW Test Workshop | June 3-6, 2018

How does CRES Compare?

• Demo mode probing on blank Al wafer

Media A = Polymer Material (Baseline)
Media B = Lapping Film (Test Case)
Test Case shows tighter control
CRESMax statically improved

How does Device CRES Compare?

- Use Lapping Film (Test Case) to Probe One Lot
 - Switched from baseline Polymer to test case lapping at red line
- CRESMax in Control Throughout Lot
- Minimal Wear to Probe Tip

Probe tips show minimal wear post run

How does Device CRES Compare?

Lapping Film (Test Case) CRES Improvement Validated via Good Die Tested

How does Device CRES Compare?

Lapping Film (Test Case) CRES Improvement Validated via Contact Sensitive Bin %

Cost Benefit

Conversion from Polymer to Lapping Film has resulted in 77% Cost Reduction Month on Month

Monthly Media Spend

OverviewCRES Evaluations

- MEMS Cantilever Material Conversion
- MEMS Vertical Spring Recipe Optimization
- Summary of Findings

MEMS Vertical Spring Cleaning Optimization

 MEMS Vertical Spring evaluated is FormFactor's Katana Probe on Al pad for wire bond applications

- Qualification presented at SWTW (S08_04_Stillman)
- TI uses FormFactor's Standard Katana K2 Probe on Pad
- 2 Part Evaluation of Recipe Change for Sameness
 - Cleaning Overdrive Reduced
 - Probing Touchdowns vs Cleaning Touchdowns

CRES Result from Cleaning Recipe Change

- Reduced Cleaning Overdrive 37%
- Increased number of probing touchdowns between cleans 36%
- Test Case still statistically in control
- 75% increase in Card Lifetime!!!

• Overview

- CRES Evaluations
 - MEMS Cantilever Material Conversion
 - MEMS Vertical Spring Recipe Optimization
- Summary of Findings

Summary of Findings

Cleaning Material Evaluation on MEMS Cantilever Spring

- Lapping film shows improvement in CRES over Polymer
- Lapping film does not significantly reduce probe card life (~5%)
- TI is seeing a 77% media spend reduction by converting to Lapping film
- Reduction in Online Cleaning Extending Probe Card Life on MEMS Vertical Spring
 - 37% reduction in cleaning overdrive
 - 36% increase of probing touchdowns between cleans
 - CRES Statistically in Control
 - Increased card life by 75%

Acknowledgement

- Connie Smith, Texas Instruments
 Dan Stillman, Texas Instruments
 Frank Meza, Formerly FormFactor
- Kevin Hughes, FormFactor

Questions

