

SWTEST PROBE TODAY, FOR TOMORROW

Smart Cars – Smart Probe Cards

Sebastian Salbrechter T.I.P.S. Messtechnik

June 2-5,2019

Overview

- \triangleright 1. Introduction
- **2. Smart Probe Cards**
 - ▷ 2.1 Illumination field module
 - ▷ 2.2 MEMS mirror module
- \triangleright 3. Conclusion
- ▷ 4. Acknowledgement

1. Introduction

Ongoing evolution within individual car traffic

- Further improvement of Advanced Driver Assistance Systems
 - Compensation/avoidance of human errors that lead to accidents
 - Driver becoming more and more to passengers of autonomous SMART CARS

• Smart cars need multiple sensors to evaluate the status quo:

- Driving condition: Speed, acceleration, steering angle, wheel specific slip, etc.
- Environment: Obstacles, distance to other cars, course of driving lane, etc.
- Recent sensor types need additional functional testing, conducted by SMART PROBE CARDS

2. Smart probe cards

What are the challenges?

- Additional functional testing besides electrical tests
 - Stimulation of chip-integrated sensors
 - Examination of micromechanical actuators and sensors

- Enhancement of standard probe cards by add-on modules to provide this ability
- This presentation shows selected developments for the integration of add-on modules for <u>LiDAR</u> Systems

2. Smart Probe Cards

What is LiDAR?

• Light Detection And Ranging - LiDAR

- System for optical distance measurement
- First used in atmospheric research and meteorology
- Key technology for autonomous driving

• Determination of time-of-flight

- Light is emitted by the laser source in changing directions
- This light is reflected by an object and then received by a detector
- Time delay Δt between emission and receiving determines distance

$$Distance = Speed_{Light} \cdot \frac{\Delta t}{2}$$

2. Smart Probe Cards Imaging with LiDAR

2. Smart Probe Cards

Imaging with LiDAR

How to probe?

Photodetector with 1D/2D pixel array

 Stimulus of photodetector chip with *Illumination field module*

Requirements (from customer test development)

- Illuminated area in chip size scale
- High homogeneity of illuminated field: +/-2.5%
- Discrete intensity levels up to 10W/m²
- Narrow band illumination wave length
- Dual site measurement

Design approach

• Situation on wafer

Design approach

- Situation on wafer
- 1st Approach: 4 LEDs in line

Design approach

- Situation on wafer
- 1st Approach: 4 LEDs in line
- Numerical simulation
 - Light intensity along sensitive area on wafer
 - Intensity distribution of LED taken from datasheet
 - Iterative determination of ideal LED spacing

Numerical simulation - Homogeneity

Numerical simulation - Homogeneity

1st Approach: 4 LEDs in line

Numerical simulation - Homogeneity

0

Verification – First measurement setup

Verification homogeneity – Simulation vs. measurement

Verification homogeneity – Simulation vs. measurement

Verification homogeneity – Simulation vs. measurement

Verification homogeneity – Simulation vs. measurement

- Measured intensity of LED much more focused around axis than specified
- Significant variance between single LEDs

Optimization of LED intensity distribution

Optimization of LED intensity distribution

Optimization of LED intensity distribution

• Glass diffusor defocuses raw LED, but still asymmetric distribution

Optimization of LED intensity distribution

- Glass diffusor defocuses raw LED, but still asymmetric distribution
- Reworked LED optics leads to smoothed and symmetric distribution

Optimization of LED intensity distribution

2nd Approach: 2 reworked LEDs in line

• Good results on the first try!

Final concept

- Usage of LEDs with reworked optics
 - learned from shown approaches
- Final concept needed some more changes and evolution steps
 - 2x2 LED arrangement per site
 - Staggered multisite probing due to needle spider configuration
- Temperature control applied
- Evaluation of long term stability of LEDs
 - Life time test conducted over month

2. Smart Probe Cards

Imaging with LiDAR

How to probe?

Photodetector with 1D/2D pixel array

 Stimulus of photodetector chip with *Illumination field module*

2. Smart Probe Cards

Imaging with LiDAR

How to probe?

MEMS mirror

 Determination of tilt angle by use of a laser beam with *MEMS mirror module*

Photodetector with 1D/2D pixel array

 Stimulus of photodetector chip with *Illumination field module*

2.2 MEMS mirror module

Requirements

- Detection of tilt angle of MEMS mirror
- High angular accuracy
- Integration in probe card with vertical needle technology
- Measurement principle: <u>Mirror galvanometer (1826)</u>
 - Usage of laser beam and Position Sensitive Detector

 $\varphi = f(x, \dots)$ -

→ Mathematic correlation and measurement error calculation needed

2.2 MEMS mirror module

Measurement principle

- A change of the mirror angle leads to a double change of the reflected beam angle (law of reflection)
 - Very sensitive measurement principle
- Mirror angle is a function of laser spot position x and distance h between MEMS mirror and PSD
- Distance error Δh_{error} leads to measurement error $\Delta \phi_{error}$
- Consideration of
 - Needle wear
 - Prober stage accuracy
 - PSD accuracy

2. Smart Probe Cards

MEMS mirror module

Illumination field module

3. Conclusion

- Development and integration of optical add-on modules for probe cards successful
- Added two more functional test technologies to our sensor test product portfolio
 - Existing: Magnetic, pressure, gas atmospheres and light
 - New: Illumination field and MEMS mirror module

And..... never trust data sheets [©]

4. Acknowledgement

- Unnamed customers willing to realize these interesting projects with us
- Our design and manufacturing team at T.I.P.S.

First setup

3 axis scanning unit

Thank you for your attention!

Smart Cars – Smart Probe Cards

Sebastian Salbrechter T.I.P.S. Messtechnik