Challenges of Trench Probing

Mr. Jory Twitchell Hardware Engineer in Test NXP

> Mr. Karan Maniar Mechanical Engineer Nidec SV TCL

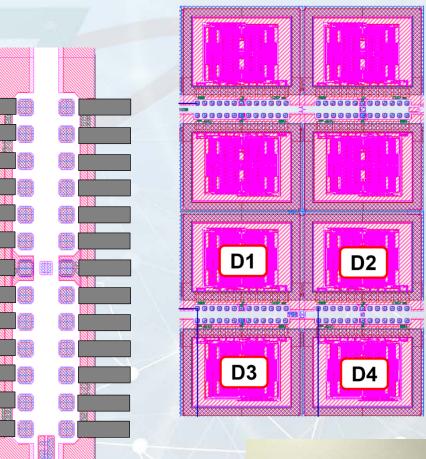
Introduction of Application

- Where do you turn when the application typically used is cantilever but now a more modern solution is needed?
 - Turn to a vertical solution, right?
- Where do you turn when the application does not function correctly with a vertical solution?
 - Back to cantilever?
 - Request custom solution?
 - Will a spring pin work for a standard aluminum pad?
 - What about Contact-related issues?

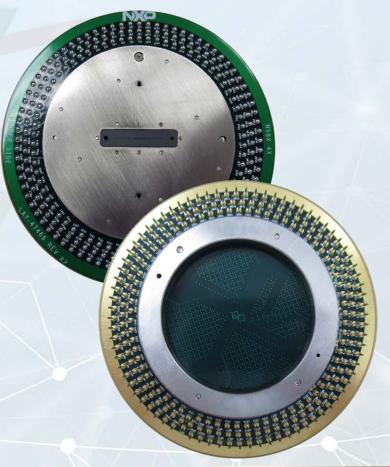
Background & Overview

- Internal NXP customer had the following requirements:
 - Probes needed to have zero float to PCB
 - Ability to probe standard bond pads & bond pads in a trench
 - Trace length and width matching within sites to control impedance
 - Tip extension below the PCB needs to be the same for standard bond pads & bond pads in trench for ease of setup.
 - Field Repairability
 - Vendor support at factory sites in Asia

Challenges Encountered


- The main challenge with this device was probing the trench on the wafer; these challenges were as follows:
 - Depth of Trench
 - Product Electrical Requirements
 - Restriction on total height from top of PCB to end of tip
 - Constant Electrical Contact Due to this requirement the usage of traditional vertical technology was not an option. Cantilever was also not suitable due to crosstalk.
- Utilizing Nidec/SV MEMS technology, we were able to design a probe head with a straight probe & longer tips allowing the probes to be in constant contact with the space transformer while at the same time probing inside the trench.

Device Specifications


• Device specifications:

- Pad size 77µm x 77µm
- Pad spacing is 140µm
- Trench
- Probe Type: MEMS P80
- Customizable Probe force per probe at Working OD:
 - At working OD: 1.8 grams
 - General: 15.2 gf/mm
- Space Transformer Attach Method: Direct Attach
 - Other ST Options, Wired, MLO, MLC & Modular
- Tip Shape: Radius, Non-Rotate
 - Additional Tip Shape Options Flat, Crown
- Tip Diameter: Radius (10 +/- 3µm)
- Tip Depth: 2.34mm +/-0.25mm, from Wafer Side of PCB

MEMS Probe Card – Keepout Requirements

- By maximizing the Keepout for the PCB we were able to maximize the pin count; in addition, by retaining the same KO, the Probe Head (PH) can be utilized for future devices using a similar PCB.
- PCB had just a 50mm diameter space for the PH so we customized our MEMS technology to meet this requirement.
- We managed the mechanicals on our Keepout so that the card achieve impedance match & equal trace widths across all the dies.
- We relocated the probe head attach screws to help achieve the PCB design requirements & reduced the pad size to allow enough room to match the trace widths.

MEMS Probe – Assembly Example

MEMS Spring

PCB Side Plunger Stable contact against MLC/MLO

DUT Side Plunger Various Tip Shape (Crown, Needle, Flat···)

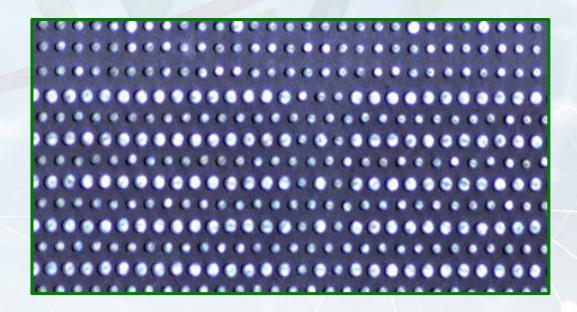
Assembly

Snap-fit Fix

Photo-Lithography Method

Flexible Spring design by Exposure Data

Low Resistance


Electroforming Ni-Pipe High Accuracy Inner/Outer Dia.

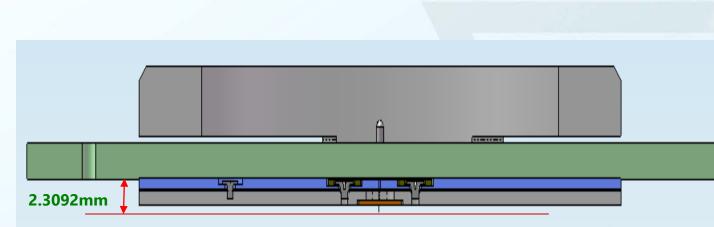
H3C Plunger + Au-Plating

MEMS Probe Flexibility

- Due the tip depth requirement we had to use a custom short probe which was
 possible due to the unique & flexible design of MEMS probes.
- These MEMS Probes can be customized for Force, Stroke, Overdrive & Tip Style giving us the capability to achieve the electrical & mechanical requirements.
- Along with optional torque rotation, the flexibility of this MEMS Probe also gives us the capability to create Hybrid Pin layouts for higher CCC.

MEMS Probe Card – Custom P80 MEMS Probe

PCB Contact Point

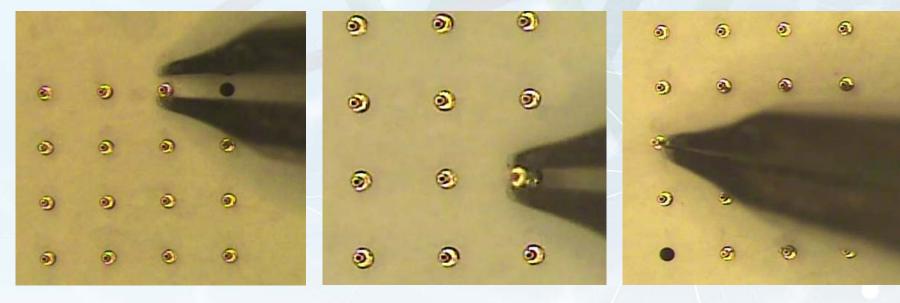

Upper GP

Lower GP

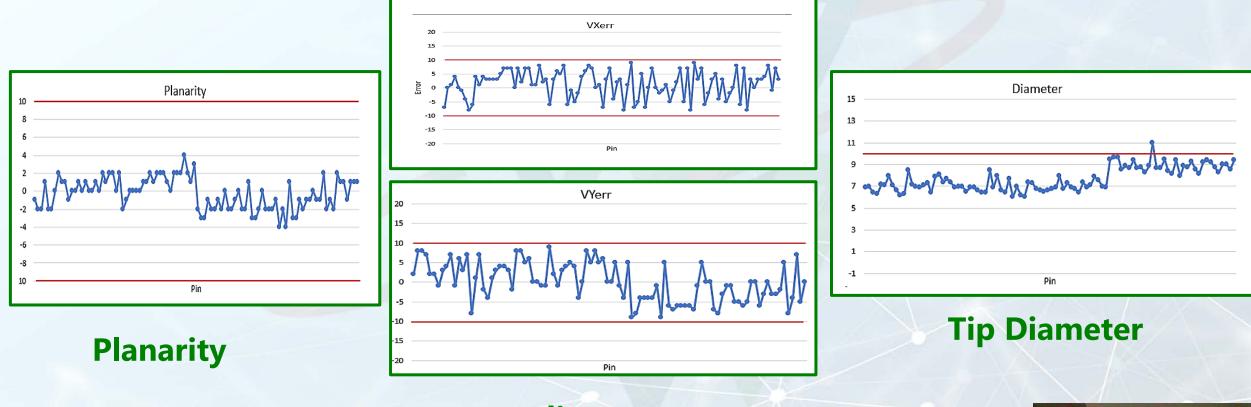
Wafer with Trench

At Recommended

OT

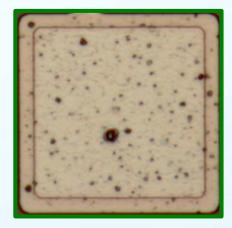

- 2.3mm of tip depth requirement resulted in the redesign of the mechanical stackup to guarantee enough support to the probe in addition to achieving higher tip extension.
- FEA simulation & deflection results helped us in designing a stack up using thinner guide plates.
- Thinner Guide Plates (GP) with vertical compression gives us the capability to go inside the trench & probe the device underneath the trench.
- Our PH was built so that the wafers can be switched to aluminum or trench probing without any further prober setting adjustments.

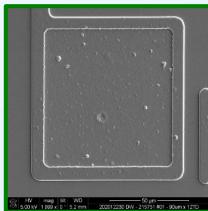
PROBE TODAY, FOR TOMORROW


Twitchell/Maniar

MEMS Probe Repair & Replacement

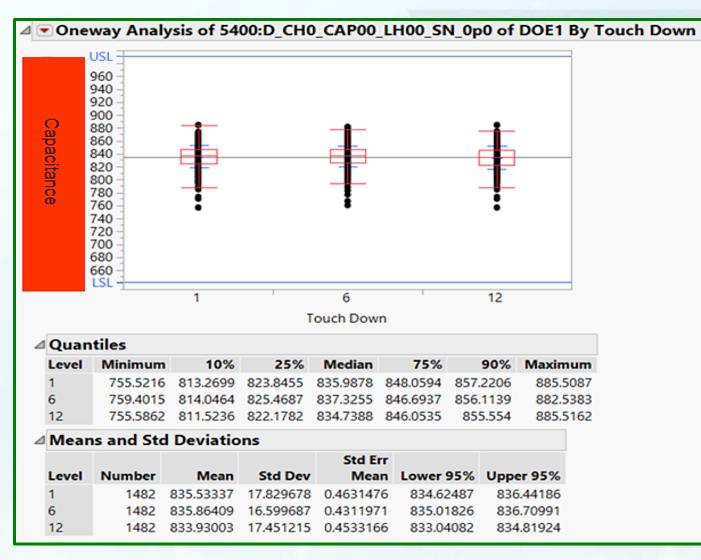
- Our MEMS cards can also be easily repaired in-house after minimal training.
- Probes can then be removed & replaced with ease onsite or at one of our worldwide facilities.
- Our MEMS Probes are easily field replaceable which can save valuable time in production.


PCA Test Results


Alignment

Probe Mark

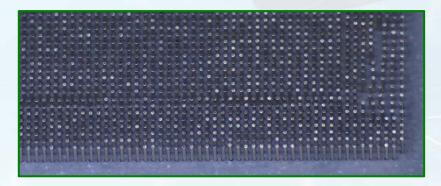
Probe Mark after 12 TD's



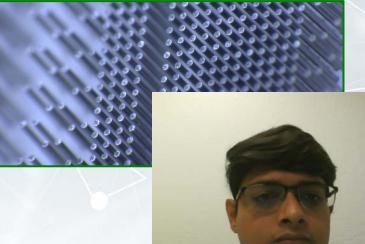
Probe Mark after 12 TD's, after Aluminum Removal

• 12TD's on the bond pad left 25% of aluminum remaining under the probe mark. No cracking observed.

Contact Results



**Contact resistance not possible for this product. Contact sensitive capacitance test was used as replacement to measure results.



Next Steps

- Monitor the current solution's test results over the product lifetime.
- Nidec SV TCL team is now working on a direct attach solution for fine pitch with the trench on the wafer.
 - Current solution is using a P80 MEMS probe for smaller pitch.
 - Next solution will need to achieve a similar performance with a tighter pitch.
- Future plan is to develop a solution with our MEMS technology for a wafer with a deeper trench.

Summary

- Nidec/SV MEMS probe design allowed NXP to meet the setup requirements from internal customer
- Probe card stability was proven over multiple touchdowns and overdrive variations
- Probes are field replaceable allowing production to reduce inventory of probe cards as compared to cantilever probe cards required
- Design of probe card allows internal customer to quickly adapt for future products shortening the NPI life cycle

Thank You

• We would like to thank the following people for helping with this presentation:

Michael Biven Kyle Cotner Yan Chen JB Hollstein

We also would like to thank SW Test conference for the opportunity to present on this topic!

