High-speed PCB electrical characterization with good stability and repeatability

Fred Chou

Alex Wei

Overview

- Background
 - Quality assurance of Probe Card
 - Industry Mega-Trends
 - Intel Delta-L for PCB Electrical Characterization
- Intel's Delta-L Algorithm
- Bottleneck of Handheld Probing Setup
- Solution for Stability, Repeatability and Less Time Consuming
- Summary & Future Work

Quality Assurance is a cornerstone to MPI's Probe Card business. This includes verification methodologies (e.g. Automated TDR test process equipment) to meet customer demand and support our quality improvement processes.

Quality Assurance is a cornerstone to MPI's Probe Card business. This includes verification methodologies (e.g. Automated TDR test process equipment) to meet customer demand and support our quality improvement processes.

Quality Assurance is a cornerstone to MPI's Probe Card business. This includes verification methodologies (e.g. Automated TDR test process equipment) to meet customer demand and support our quality improvement processes.

Quality Assurance is a cornerstone to MPI's Probe Card business. This includes verification methodologies (e.g. Automated TDR test process equipment) to meet customer demand and support our quality improvement processes.

MPI work together with Intel to solve PCB loss characterization in HVM by MPI's experience measuring probe card.

MPI Technology Transfer

Quality Inspection: TDR Impedance, Loss, Crosstalk, PDN and so on. Data Rate: NRZ: 32+GT/s, PAM4: 56GT/s, 112GT/s

Quality Inspection: PCB Loss characterization in HVM Data Rate: NRZ: <32+GT/s

Industry Mega-Trends

Future IT trends proposed by Intel require industry focus on product development, design and business through cloud services.

Source: Intel Corporation presentation material released on Nov.21,2019.

Intel Delta-L for PCB Electrical Characterization

As market demand for cloud computing is increases, channel loss on printedcircuit board (PCB) will continue to increase in importance in order to meet requirements of signaling integrity for high-speed I/Os.

Intel Delta-L Algorithm Benefit

- Efficiently characterize PCB loss
- PCB material selection Guide for Designed
- PCB material quality monitoring

Source: Intel Corporation presentation material released on Nov.21,2019

Overview

- Background
- Intel's Delta-L Algorithm
 - Delta-L Algorithm
 - Probing Quality Characterization
 - Measurement Quality Check
 - Repeatability Check
- Bottleneck of Handheld Probing Setup
- Solution for Stability, Repeatability and Less Time Consuming
- Summary & Future Work

Delta-L Algorithm

- Intel's PCB Loss Methodology: Delta-L Algorithm
- Loss can be extracted by measuring two different length transmission lines

Measurement

 $T_{L1} = T_A \times T_B$ $T_{L2} = T_A \times T_{DUT} \times T_B$ $T_{L2} \times T_{L1}^{-1} = T_A \times T_{DUT} \times T_B \times T_B^{-1} \times T_A^{-1}$ $T_{L2} \times T_{L1}^{-1} = T_{DUT}$ Delta-L dB/inch $T_{DUT} = \begin{bmatrix} e^{\gamma * (L_2 - L_1)} & 0 \\ 0 & e^{-\gamma * (L_2 - L_1)} \end{bmatrix}$ $\gamma = \alpha + j\beta$ $S21_{DUT} = e^{-\gamma * (L_2 - L_1)} = e^{-\alpha * (L_2 - L_1)}$ $Loss per inch = |S21_{DUT}|/\Delta Length$

PCB Loss

Source: Delta-L+ for Electrical Characterization, http://www.intel.com/content/www/us/en/processors/xeon/delta-l-plus-methodology-for-electrical-characterization-guide.html MULTILINE TRL REVEALED, https://www.researchgate.net/publication/4027015 Multiline TRL revealed

Probing Quality Characterization

In order to validate measurement stability and repeatability, Intel proposed the probing quality characterization process below.

Source: Test Method 2.5.5.14, Measuring High Frequency Signal Loss and Propagation on Printed Boards with Frequency Domain Methods, IPC-D24D

Measurement Quality Check

Uncertainty Check<20%

Uncertainty Check<20%

Uncertainty Check>20%

Sources of "Glitches" in Measured Data

- **1. Manufacturing variation**
- 2. Quality of probes & fixture

Source: Test Method 2.5.5.14, Measuring Righ Figuency Signet Cost and Croppetion of Printed Boards with Frequency Domain Methods, IPC-D24D

Measurement Quality Check

Probe quality check: IL<3.5dB for each probe @20GHz

Measurement Quality Check

Cross over check: IL and RL don't cross over

Source: Test Method 2.5.5.14, Measuring High Frequency Signal Loss and Propagation on Printed Boards with Frequency Domain Methods, IPC-D24D

Repeatability Check

L1	4GHz	8GHz	12.89GHz
T1	0.491	0.858	1.261
T2	0.492	0.858	1.260
T3	0.492	0.860	1.263
T4	0.492	0.858	1.261
T5	0.491	0.858	1.261
T6	0.492	0.859	1.262
T7	0.490	0.858	1.261
T8	0.489	0.856	1.259
Т9	0.490	0.858	1.261
T10	0.491	0.858	1.261
σ	0.001	0.001	0.001
pass/fail	pass	pass	pass

 At least 10 measurements conducted to ensure repeatability (probing setup quality)

Standard deviation specification: <0.015dB@4GHz <0.02dB@8GHz <0.025dB@12.89GHz

PROBE TODAY, FOR TOMORROW

•

Overview

- Background
- Intel's Delta-L Algorithm
- Bottleneck of Handheld Probing Setup
 - Measurement Method
 - Handheld Probing Process
 - Bottleneck of Handheld Probing Setup
- Solution for Stability, Repeatability and Less Time Consuming
- Summary & Future Work

Measurement Method

Handheld probing is the commonest way for insertion loss of PCB.

Handheld Probing Process

Bottleneck of Handheld Probing Setup

1. Touching offset 4. Time consuming Pad Guide Pad GURE Pin 2. Bad contact condition (e.g. no probe marks) **Guide** Pin **Guide Hole** Wall 3. RF test cable repeatability \bigcirc 0 0

Pad Arrangement Setting

Measurement Data Saving

Data Analysis

Report

PROBE TODAY, FOR TOMORROW

Φ

Overview

- Background
- Intel's Delta-L Algorithm
- Bottleneck of Handheld Probing Setup
- Solution for Stability, Repeatability and Less Time Consuming
 - Semi-automation Delta-L measurement system
 - Comparison between Handheld and Semi-automation
 - Result Measurement Time
 - Result Repeatability
- Summary & Future Work

Semi-automation Delta-L measurement system

Automation can significantly improve stability, repeatability and time consumption over handheld operations

Enter, MPI's Semi-automatic Delta-L Solution:

Handheld

Semi-automation

Manuel with guide pin	Arrangement	Image Setting Gerber import coordinate input	User friendly and efficient setup process
Manuel with guide pin	Measurement	Optical system X, Y, Z, θ precision systems Cable fixture	Good stability Repeatability
Semi-automation	Data Analysis	Auto-saving raw data Auto-executing Delta L	Time Saving
Manuel	Report	Auto-generator	Customized Report

Result - Measurement Time

A

130 minutes Most experienced

145 minutes

155 minutes Beginner

The Semi-Automation Delta-L solution took half the time to complete the same measurements when compared to handheld operation.

Result - Repeatability

The repeatability of semi-automated Delta-L is greater than handheld results with improved standard deviation from different operators.

- Background
- Intel's Delta-L Algorithm
- Bottleneck of Handheld Probing Setup
- Solution for Stability, Repeatability and Less Time Consuming
- Summary & Future Work
 - Summary
 - Future Work

Summary

Semi-automation Delta-L Solution

To have more accurate and robust PCB loss characterization.

- ✓ Enhances the measurement repeatability(3+x STD Improvement).
- ✓ High frequency characterization(20+GHz)
- ✓ Reduces more than half of measurement resource(>50% +Time Consuming Improvement).

PROBE TODAY, FOR TOMORROW

Future Work

To develop an advanced metrology for PCB loss characterization at higher frequency since computing market always needs more throughput.

Years	2020		202X	
Inspection Item	Application	Data Rate	Application	Data Rate
Insertion Loss	PCIe 3.0	8GT/s	PCIe 5.0	32GT/s
	PCIe 4.0	16GT/s	PCIe 6.0	XXGT/s
	Ethernet	25GT/s		
Others	NA		SI/PI study	

Acknowledgements

Special Thanks to:

Jimmy Hsu

Raymond ChuangSteven WuChristine LiuMark SunSamson TangJason HoGary TsaiMonica LiuWilliam LinWayne LinEd ChangAlex YangKenny HuangJohnny Hsieh

Any Questions?