

The Digital Revolution: NRZ to PAM4

Aug. 30 – Sep. 1, 2021

Daniel Bock, Ph.D. David Raschko

Agenda

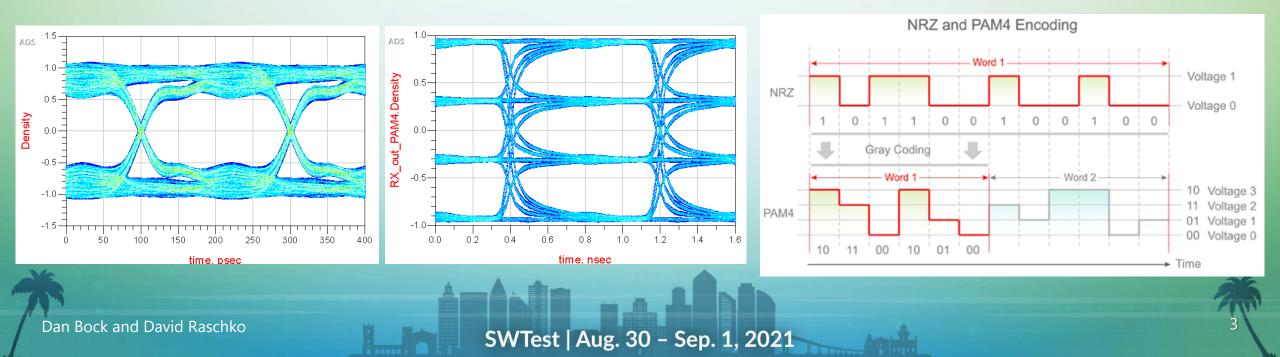
Introduction

- What is new with PAM4?
- Why do we need PAM4?
- What is the timeline for PAM4?

• What is the Status Quo for Digital Test? (NRZ)

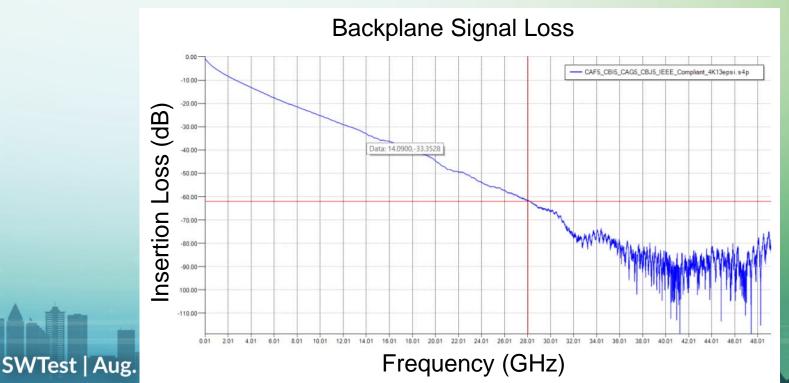
- What specs are important?
- How are specs determined?
- Sensitivity of NRZ to loss

• What changes with PAM4 for Test?


- Sensitivity of PAM4 to loss
- What specs are needed for PAM4?

How is Digital Test Managed?

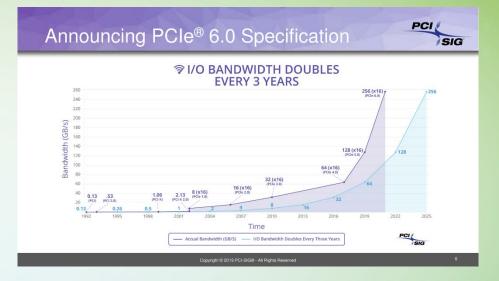
- Testerization
- Loopbacks
- Loopback Taps
- New FFI MEMS Probe and Summary

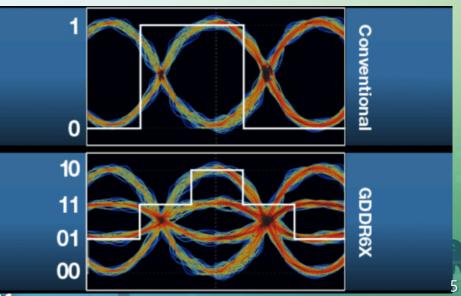

What is PAM4?

- Pulse Amplitude Modulation
- Digital encoding to create bitstreams
 - Uses 4 Amplitude Levels to send 2 bits per Unit Interval
 - Effectively doubles the data rate without a change in clock speed

Why PAM4?

- As speeds increase loss also increases
- PAM4 2x the data rate without increasing frequency
- PCIe as an example:
 - Data rates double with each new standard
 - PCIe 5.0 = 32Gbps
 - PCIe 6.0 = 64Gbps
 - NRZ = 32GHz
 - PAM4 = 16GHz


When?


• PCle 6.0

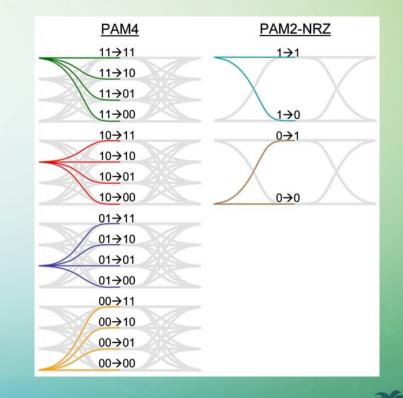
- Next generation PCIe communication protocol
- Standard released in Q4 2020

GDDR6X DRAM

- Memory interface that uses PAM4 in conjunction with high-end graphics cards
- Q4 2020
- <u>https://www.edn.com/pam4-makes-it-to-</u> <u>memory-interfaces/</u>

SWTest | Aug. 30 - Sep. 1, 2021

How Does PAM4 Affect Wafer Test?


- Probe Card specs traditionally derived through the Nyquist frequency
 - The Nyquist frequency is the maximum frequency fmax that can be measured with a system sampling at frequency fsample
 - fsample = 2 fmax
 - 15dB Return Loss
 - 3dB Insertion Loss
 - 20dB Crosstalk
 - For a 16 Gbps NRZ signal, the 3 dB point is 8 GHz using this shorthand

Do these specs work for PAM4?

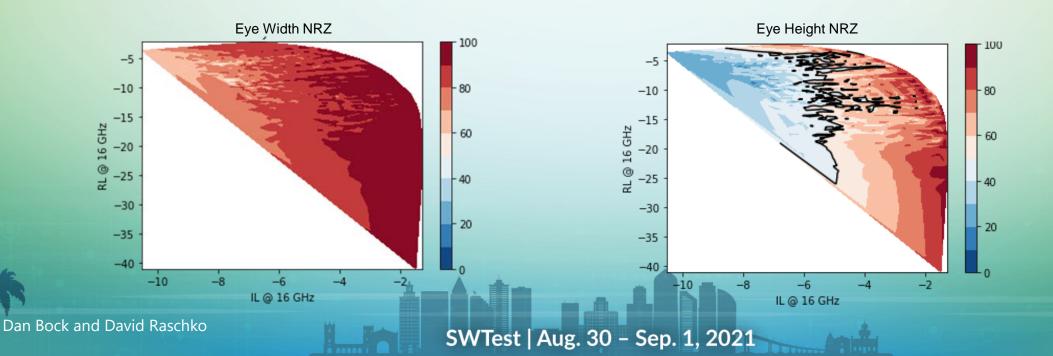
PAM4 Specifications?

- The specifications for PAM4 require better performance than a NRZ signal operating at the same symbol rate
- That is due to:
 - The number of transitions is much higher

– The dV between levels is much lower

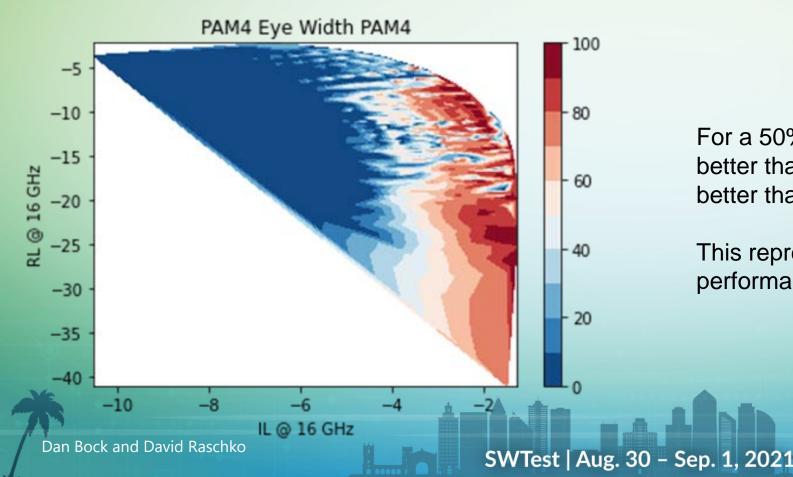
General Overview of Spec Differences

- The differences lead to 'generic' differences in performance
- What do these generic differences require from the probe card?


TABLE 1				
	NRZ	PAM4		
Bits Per Symbol	1	2		
Symbols	2	4		
Eye Diagrams Per UI	1	3		
Relative SNR Electrical	0 dB	9.5+ dB		
Relative SNR Optical	0 dB	4.7+ dB		
Distinct Transitions	2	12		
Rising/Falling Edges	2	6		
Average Transition Density	50%	75%		
Skew and Compression	Absent	Present		

https://www.signalintegrityjournal.com/articles/1151-pam4-forbetter-and-worse

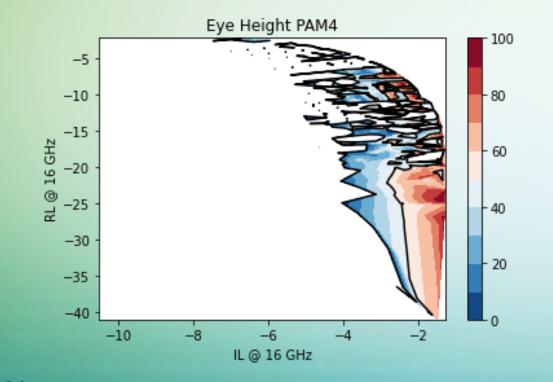
SWTest | Aug. 30 – Sep. 1, 2021


NRZ Loss Sensitivity

- Sensitivity analysis exploring eye opening vs. Insertion Loss and Return Loss
 - NRZ overall performance appears to be dominated by the height, NOT WIDTH
 - At 16 GHz, if IL is < 5 dB, then the eye is larger than 50%</p>

PAM4 Loss Sensitivity (Width)

Sensitivity analysis exploring eye Width vs. Insertion Loss and Return Loss



For a 50% eye width Insertion Loss must be better than -3 dB and Return Loss must be better than -10 dB at the Nyquist frequency

This represents a ~2x increase in probe card performance compared to NRZ

PAM4 Loss Sensitivity (Height)

Sensitivity analysis exploring eye Height vs. Insertion Loss and Return Loss

For a 50% eye height Insertion Loss must be better than -3 dB and Return Loss must be better than -10 dB at the Nyquist frequency

The eye height appears to fall off a cliff much faster than the width

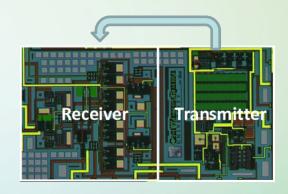
Dan Bock and David Raschko

SWTest | Aug. 30 - Sep. 1, 2021

Comments on Eye Height and Width

PAM4 and NRZ Probe Card Spec:

Digital Protocol Type	Insertion Loss Spec	Return Loss Spec
NRZ	-5 dB	-10 dB
PAM4	-3 dB	-10 dB


- It appears that the eye height is more sensitive to performance than the width
 - Most likely since IL is known to be more important to the performance than RL
 - IL affects the height more than the width, and RL affects the width more than the height

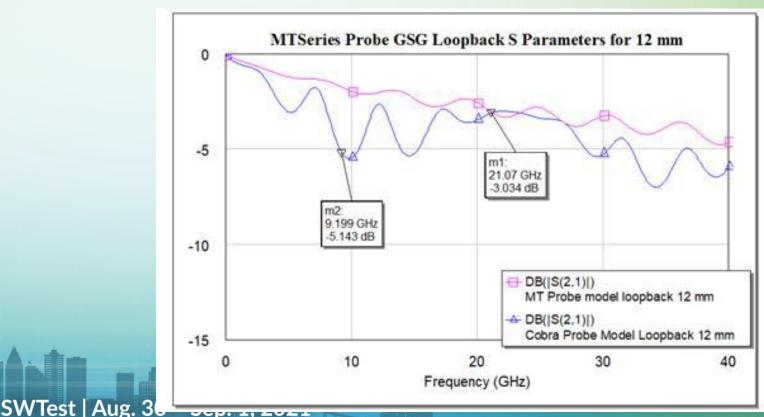
How is Digital Test Managed?

- Testerization Direct Connection to Tester Channel
 - Probe -> MLO -> PCBA -> Tester Resource
 - MLO/PCBA Loss >> Probe Loss
- Loopback Test Signal goes from DUT TX to RX
 - Probe -> MLO -> Probe
 - MLO/PCBA Loss = Probe Loss
 - Probe Loss is significant as it contributes to loss 2x in the signal path
- Loopback Tap Combination of high speed on loopback, and low speed on tester path


SWTest | Aug. 30 - Sep. 1, 2021

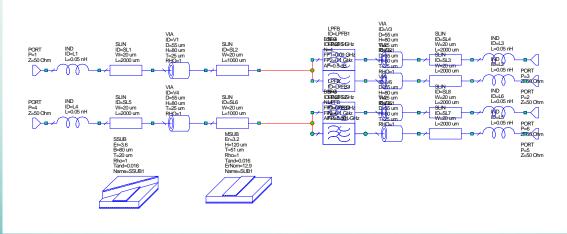
Recei

Testerization Performance


Testerization = Probe + MLO + PCBA to tester Resource

- MLO and PCBA Loss dominate the performance due to long path lengths
- PAM4 ~10Gbps
- NRZ ~10 Gbps

Loopback Performance


- Loopback = Probe + MLO + Probe
 - MLO Loss ~= Probe Loss
 - Performance gated by MLO length and probe loss
- NRZ ~ 32Gbps
- PAM4 ~ 64Gbps

Model for Loopback with Tap

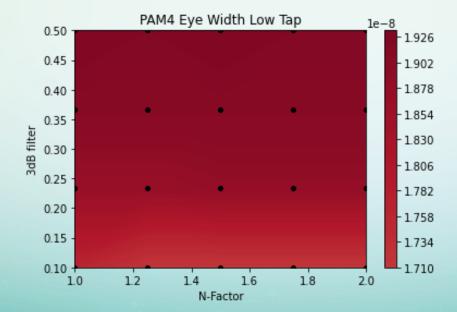
The use of a tap to the tester comes from a worry about false positives

- Bringing a signal back to the tester ensures confidence in the test coverage.
- The two channels to do not operate simultaneously
 - One is for full speed PAM4 test, while the other is at a much lower speed
 - Low speed is at 100 Mbps
- In order to separate the two channels, a filter was included to maintain performance

Dan Bock and David Raschko

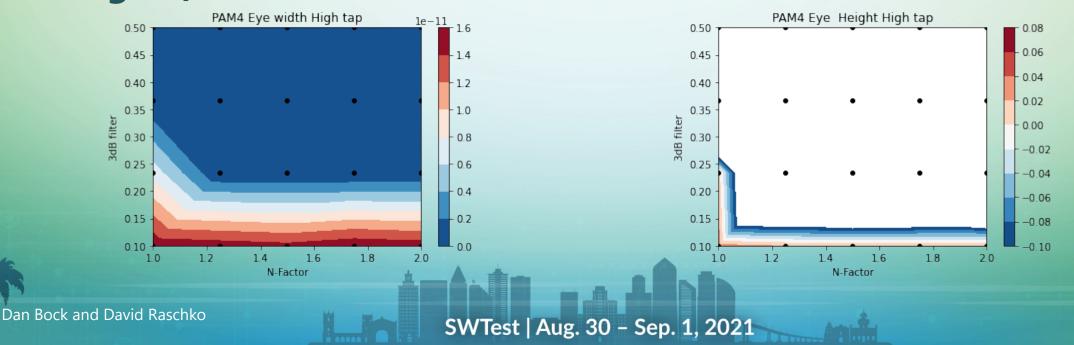
SWTest | Aug. 30 - Sep. 1, 2021

Model for Loopback with Tap


- Some of the factors that we looked at are:
 - What is the 3 dB point on the filter for the cross over between the two signal paths?
 - Should the 3 dB point of the high speed and low speed lines be the same? Should there be a factor (N-factor) separating them that can improve performance?

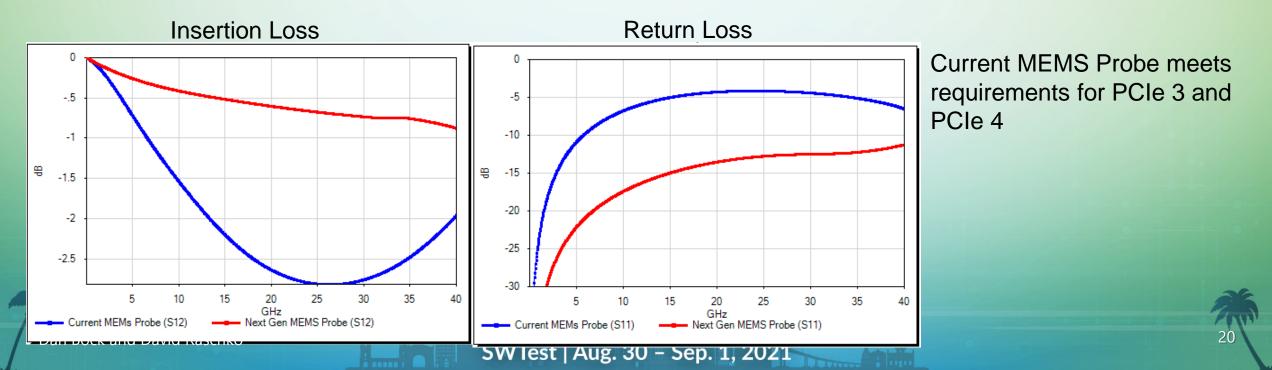
SWTest | Aug. 30 – Sep. 1, 2021

 The low-speed side always has overall good performance, no matter on where the 3 dB point is, as well as the Nfactor


Dan Bock and David Raschko

SWTest | Aug. 30 - Sep. 1, 2021

High-Speed Side


- The high-speed side appeared to be much more sensitive to the N-factor, as well as the 3 dB point
 - The best performance was when N-factor = 1, and the 3 dB point stays close to 100 MHz (the frequency of the low-speed signal)

FFI Products

Next Gen MT Series MEMS probe for High-Speed Test

- Probe is 20% shorter for reduced inductance
 - >-0.5 dB Insertion Loss at 16GHz (PCIe 5/6)
 - <-15 dB Return Loss at 16 GHz (PCIe 5/6)
- MT Series Probe Available for Evaluation by the end of 2021

Test Summary

PAM-4 specs will need to be tighter compared to NRZ:

Digital Protocol Type	Insertion Loss Spec	Return Loss Spec
NRZ	-5 dB	-10 dB
PAM4	-3 dB	-10 dB

- Testerization has problems with path length loss limiting performance to ~10Gbps
- MLO Loopbacks have significantly lower loss, but the probe begins to become the dominate loss factor
- Loopback taps require that the filter between the two sides have the same 3 dB point, as well as keep it as close to the maximum frequency of the low-speed test

Conclusion

- The requirements for PAM4 vs NRZ indicate that probe card specifications should be more stringent than that for NRZ probe cards
- Loopbacks with a tap to the tester is possible, but require care in design, as well as full speed test to tester is not going to be possible most of the time
- FFI Products are ready for the challenges being presented by the move to PAM4 with custom solutions