

3D magnetic sensor stimulation New solutions for wafer probing

Rainer Gaggl Sebastian Salbrechter Georg Franz T.I.P.S. Messtechnik GmbH

Technical Innovation Physical Solution

Aug. 30 – Sep. 1, 2021

Overview

Magnetic Sensors

- Sensing technology XMR sensor evolution
- Sensor applications from current to geomagnetic sensing
- Magnetic stimulation field strength range
- 3D magnetic stimulation in wafer test "magnetic" probe cards

3D Medium field stimulation

- Probe card with rotating perament magnet and ring coil
- Magnet for in-plane-, Coil for out-of-plane-stimulation
- Magnetic field characteristics strength, accuracy and homogeneity
- 3D Low field stimulation (geomagnetic)
 - Probe card with 2 sets of dipole coils and ring coil
 - Dipole coils for in-plane-, ring coil for out-of-plane-stimulation
 - Magnetic field characteristics strength, accuracy and homogeneity

XMR Sensors

Image source: M.Meyer, Chances of XMR sensors in Automotive Applications, 11. MR-Symposium

Timeline R&D

Technology Comparison

Technology	Hall Effect	AMR	GMR	TMR
Power Consumption (mA)	5 ~ 20	1 ~ 10	1 ~ 10	0.001 ~ 0.01
Die Size (mm²)	1 × 1	1 × 1	1 × 2	0.5 × 0.5
Field Sensitivity (mV/V/Oe)	~ 0.05	~ 1	~ 3	~ 100
Dynamic Range (Oe)	~ 10000	~ 10	~ 10 <mark>0</mark>	~ 1000
Resolution (nT/Hz ^{1/2})	>100	0.1 ~ 10	1 ~ 10	0.1 ~ 10
Temperature Performance (°C)	< 150	< 1 50	< 150	< 200

Image source: www.dowaytech.com

G.Franz

XMR Sensors

GMR example

- Application: current sensor
- Current range: 5 A
- Field range: +/- 5 mT
- Supply: 3.3 V

1040

400 500

Images source: www.allegromicro.com datasheet

XMR Sensors

Field Strength Range

For air:
$$ec{B}=\mu\cdotec{H}$$

 $\mu = \mu_r \cdot \mu_0$ $\mu_r = 1.0000004 \approx 1$ $\mu_0 = 4\pi \cdot 10^{-7} Vs/Am$

CGS / Gaussian units for reference only (deprecated)

Stimulation Ranges

3D Magnetic wafer probing

"Global field" approach

Helmholtz coil

3D Magnetic wafer probing

"Local field" approach

G.Franz

3D Magnetic wafer probing

Constraints

- one-sided access
- tester interface
- probe head
- test temperature

Concept

• Superposition: linear addition of two magnetic fields

SWTest | Aug. 30 - Sep. 1, 2021

Effective field directions

- Bx and By coupled
- Bz independent

Effective strengths

- Amplitude Br fixed 50 mT
- Amplitude Bx, By coupled
- Bz variable -50 mT ... +50 mT

Rotary unit specifications

- angular position repeatability 0.02°
- min. continuous speed 60 rpm
- max. continuous speed 2000 rpm
- exchangeable permanent magnets for 10 ... 50 mT

Coil specifications

- Coreless aluminium ribbon coil
- Power dissipation 38W at 50 mT / 10% duty cycle

Magnet field uniformity

for multisite testing

G.Franz

- measured with hi-res 3D magnetic scanner
- measured in wafer plane

9.08

4.49

-0.10

-4.69

Variation of y-component of magnetic flux density

Magnet field uniformity

- for multisite testing
- calculated with FEM

G.Franz

- verified with Gaussmeter
- max deviation 1.5 mT (3%)

FEM simulation (rotational symmetry) Einheit: mT Globales Koordinatensystem Zeit: 1 59.383 Max 58,714 58,046 57,377 56,708 56,04 55,371 coil cross-section 54,703 54,034 53,366 52,697 52,028 51,36 50,691 50,023 Min 10,000 (mm) 5.000 7 500 Geometrie (Druckvorschau), Berichtvorschau, 7 Tabellarische Dater raph (Diagramm) Länge [mm] Vert [mT] 0 10 Animationsbilder - 1 😥 🖣 3 Zykle Animation 2 Sek. (Autom.) 51,313 67 9,7778 57,771 68 9,9259 57,893 59,383 E 53,75 69 10,074 58,013 70 10,222 58,315

7,5

10,

SWTest | Aug. 30 – Sep. 1, 2021

50,023

2,5

5

[mm]

71 10,37

72 10,519

73 10,667

12,

58,617

58,868

59.045

Conclusion

- almost full "3D" stimulation
- 50 mT sufficient to drive many sensors in saturation
- currently only solution without hysteresis
- high precision
- high speed (rotation)
- compact size 50mm height

Dipole coil field

S

Wafer chuck

In - plane (Bx,

Principle

- coil pair
- antisymmetric polarity
- "oval coil" to extend field

region with almost wafer-parallel magnetic field lines

X×

Concept

• Superposition: linear addition of three magnetic fields

Solution

4.5" probe card

X-Y-coil module

X-Y-coil module (bottom view)

Z-coil module on bottom of PCB

Features and Specification

- All axes independent from each other
- Fully linear system no hysteresis
- Fields directly proportional to applied coil currents
- Target flux density ± 1 mT per axis
- Active air cooling with CDA necessary

FEM simulation dipole

- used for dimensioning
- required flux density 1 mT
- given vertical stackup
- find coil geometry / excitation current

FEM simulation z-coil

- used for dimensioning
- required flux density 1 mT
- given vertical stackup
- find coil geometry / excitation current

Magnet field uniformity

- measured with hi-res 3D magetic scanner
- measured in wafer plane
- only z-coil powered

Magnet field uniformity

measured with hi-res 3D magetic scanner •

Y-Position [n

- measured in wafer plane
- only one dipole powered: "Y" makes By= 1mT •

Conclusion

- Design optimized by FEM for best field uniformity
- Precision aluminium ribbon coils
- Modular design for easy probe card integration
- Very compact size

Contact Information

In case of questions or for additional information please conatct:

Mr. Georg FRANZ T.I.P.S. Messtechnik GmbH g.franz@tips.co.at

+43 4242 319 720 19

