

High Power Wafertest – How to keep the temperature under control

Aug. 30 – Sep. 1, 2021

Klemens Reitinger CTO

Agenda

- **1. Introduction of different high power scenarios**
- 2. Background Market outlook and motivation
- **3. Thermal challenges for each scenario**
- 4. Possible solutions for each scenario
- 5. Summary
- 6. Outlook

- "High Power" one term for different test scenarios
- 1. High voltage/High current/Short pulse test (HV/HC)
- 2. Low voltage/High current per device/Single or low number of parallel DUT short screening test (Hi-Wattage)
- 3. Low voltage/Low current per device/High number of parallel DUT/Full wafer contact (FWC)

One common challenge: Accurate temperature regulation of DUT

SWTest | Aug. 30 – Sep. 1, 2021

Market Outlook

VCSEL

Klemens Reitinger

SWTest | Aug. 30 - Sep. 1, 2021

Motivation

- Major topics such as renewable energies, cloud computing, big data and electromobility would be inconceivable without them
- As with all semiconductor devices there is a trend to test early: means wafer probing
- As a thermal chuck manufacturer, we are focusing on temperature maintainance and accuracy under these special conditions

- Voltages up to 12kV DC
- Current up to 600A
- Pulsed tests
- Spark suppression techniques are used (low conducting gases, pressurized chambers)

Products: IGBT, MOSFET, HV Diodes,

Klemens Reitinger

SWTest | Aug. 30 – Sep. 1, 2021

HV – HC Test Thermal Challenges

- CDA pressurized probe cards cause huge temperature offset at high temperature test
- Flashover risk at chuck and surrounding
- Wafer backside contact
- Very high temperature required for new materials (SiC, GaN)
- High voltage isolation layers needed, bad thermal conductivity

Solution for Temperature Offset Caused by CDA Pressurized Probe Cards

ATCM (Air Temperature Control Module)

- Controls Temperature, Flow and Pressure of the CDA
- Usable up to +300°C
- Connected to chuck temperature controller with automatic offset algorithm

SWTest | Aug. 30 - Sep. 1, 2021

HV/HC Test - ATCM Performance

w/o ATCM

Chuck Temperature (°C)	CDA airflow (l/min)	DUT Temperature (°C)	Temperature Offset (°C)
60	60	50	-10
80	60	65	-15
100	60	80	-20
100	100	51	-49

Almost 50°C (!) offset

with ATCM

Chuck Temperature (°C)	Pressure (bar)	CDA airflow (l/min)	DUT Temperature (°C)	Temperature Offset (°C)
100	2	50	100	0
100	4	50	98,6	-1,4
100	4	75	99	-1
100	4	83	100	0
100	4	100	100,6	0,6
100	6	130	97	-3

- Offset clearly below 5°C
- Automatic adaption to even higher air flow

Flashover Risk in Dependency to Temperature

Flashover risk points

Current Density over Temperature

Gas Properties	Gas	$\frac{(E/p)_0}{\frac{kV}{bar \cdot mm}}$	$\frac{kV}{(bar mm)}^{1/2}$
	SF ₆	8,80	0,27
		6,61	2,19
	CO_2	3,21	5,88
	Luft	1,85	3,87
		2,43	2,01
		2,44	2,12
	N_2	2,44	4,85
	H_2	1,01	2,42

- Flashover risk significantly raises with higher temperature
- Air gaps have to be sufficient
- Other gases than air may help but: environmental concerns have to be taken into account

Klemens Reitinger

SWTest | Aug. 30 - Sep. 1, 2021

Typical HV/HC High Temperature Chuck

- Up to 12kV insulated chuck top
- Up to 3kV low leakage triaxial set up
- Thermally optimized and fully integrated insulation components
- Low resistance gold surface with special vacuum design
- Thermally designed HC connection
 points to the chuck top
- Ultra High Temperature configurations available for GaN, SiC, etc. wafers

SWTest | Aug. 30 – Sep. 1, 2021

Typical High Wattage Test Set up

Power Input >500W per die

- Single chip is tested with low voltage and high current
- A high-density power load is applied to the DUT
- High temperature rise needs to be addressed
- Temperature uniformity over the 300mm surface must be ensured under load
- Products are typically CPU, GPU

Klemens Reitinger

SWTest | Aug. 30 – Sep. 1, 2021

High Wattage Test Thermal Challenges

- High wattage density needs high dissipation capability from the chuck underneath the wafer
- Cutting edge devices generating high wattage to be removed by the chuck and chiller
- Thermal resistance between wafer and chuck creates a temperature offset
- Thermal conditions for the DUT needs to be the same independent of the die's position on the wafer

Solution for High Wattage Dissipation

- Chuck system combines multi sensor sections in the chuck with new liquid heat exchanger
- Thermal controller software controls temperature independently of DUT location
- New heat exchanger inside the chuck eliminates bottleneck for powerful liquid chiller
- Modular chiller concept to adapt on dissipation and temperature range

High Wattage Dissipation

Measurement Set up

- Data taken at 9 different sections of the chuck
- Power density is 150W on 15mm x 15mm
- Chuck set point is +15°C
- Temperature is measured inside the chuck and also directly beside the DUT with extra sensor

High Wattage Dissipation Data Data of 9 points, sensors inside the chuck:

SWTest | Aug. 30 - Sep. 1, 2021

High Wattage Dissipation Data Data of 9 points, extra Sensor:

SWTest | Aug. 30 - Sep. 1, 2021

Interpretation of Data

- Uniform reaction on all 9 points inside the chuck within +/-2°C
- Uniform reaction of the extra sensor (≈ DUT), however in a bigger range of about +/- 5°C
- Thermal resistance between sensor / wafer / chuck is key to the data → thermal resistance between wafer and chuck is key to real measurement
- Average thermal resistance in this case is (25°C 15°C) / 150W = 0,07 °C / W

Summary of High Wattage Chucks

- Solution is provided for High Wattage device testing (CPU, GPU, etc...) up to:
 - 600W per die
 - -60°C up to +150°C temperature range
 - 300 mm
- Data proved:
 - Same reaction independent from location
 - Fast adaption of chuck regarding power application
 - Uniform thermal resistance between chuck and wafer

Typical Full Wafer Contact (FWC) Test Set Up

- Massive parallel contacting of many dies on the wafer up to full wafer contact
- Power is generated by many low power devices (e.g. 2048 x 0,5W = 1024W thermal load)
- Products: DRAM, VCSEL, WLBI

Thermal issues with FWC

- The total amount of power can get very high, challenging at low temperatures
- Even with the strongest chiller, the heat exchange capabilities of the chuck is the bottleneck
- Good thermal uniformity is hard to achieve, especially non-operating dies are hard to predict

Thermal Solution for FWC Test

- New Heat Exchanger can allow very high power dissipation (up to 5kW)
- Special chuck design to deal with very high mechanical load
- Modular chiller concept to adapt to different applications

Test Set up for FWC Test

- 300mm heating device (up to 3kW) applied to a 300mm liquid chuck
- Temperature performance with different loadings and at different temperatures are performed

Data from FWC Test

- 2,5kW applied at different temperatures
- Heat exchanger behaviour shown at different temperatures:

+20°C - 40°C - 60°C

→ 2,5kW dissipation for -40°C chuck temperature possible

Summary

- All 3 "High Power" scenarios come with thermal challenges
- Very different approaches are needed to solve the challenges
- Temperature offset of CDA pressurized probcards can be adressed with ATCM
- Temperature uniformity at high wattage test can be adressed with the special high wattage chuck
- Very High power dissipation at FWC can be adressed with new heat exchanger and strong chiller, even at very low temperatures

Outlook

Work to be done:

– HV/HC Chucks:

- > 400°C solution required
- Lower leakage at elevated temperatures and voltages required
- High Wattage Chucks:
 - Better control of the DUT required
 - Faster response time required
- FWC Chucks
 - High power dissipation at elevated temperatures required
 - Better temperature uniformity required

Thank you!

For questions or more information, please visit our website <u>www.ers-gmbh.com</u> or contact us at info@ers-gmbh.de

Aug. 30 - Sep. 1, 2021