

Probe to pad alignment improvement over wide temperature range for automotive applications with large probe array size, high parallelism and small pads size

S. Usai – ST Microelectronics France

E. Bertarelli – Technoprobe Italy

Aug. 30 - Sep. 1, 202

Summary

Introduction

- Probe card thermal expansion behavior: theory and experiments
- HCTE probe card solution development
- Trials on the field
 - Probe card configuration
 - Probing setup & Trials description
 - Data collected
 - Probe marks optical inspection
 - Probe marks position analysis (Automatic Visual Inspection)
- Conclusions
- References & Acknowledgements

• As widely known and broadly discussed in literature (examples are refs [1] and [2]), probe to pad alignment is *a challenge* for wide temperature range & large arrays

• Wafer

- After loading on chuck, it reaches chuck temperature rapidly (~ seconds) and uniformly (low mass & low thickness compared with wafer chuck)
- Wafer size immediately changes according to the coefficient of thermal expansion (CTE) of Silicon

Probe card

- Adapts over much longer time scale (~ minutes/hours)
- Probe head "size" (= distance between probe tips ad the edge of array) change according to
 - 1) **Temperature field & stabilization** of probe card → Full soak time needed to work *near equilibrium*
 - 2) Equivalent CTE of probe card system

The resulting phenomenon is a probe mark shift

- It is due to different planar thermal deformation of test structure array located on wafer (pads, bumps, ...) compared to probe array located on the probe head
- Wafer is expanding more than probe array due to different CTE and different Temperature of parts
- Considering a correctly aligned PC, the error is zero at array center and proportional to the distance from center → Error is relevant for large PHs and/or small probing area and/or extended temperature range

Wafer behavior

- Average CTE in the interval from 30 °C to 135 °C is measured on wafer
- Distance measurement of reference marks on wafer surface is executed after 15 min of stabilization time on chuck, with UF3000ex prober using prober camera

Probe card behavior

- Measurements of temperature in selected probe card locations on internal test vehicle based on Ultraflex DD platform, on prober without test head docked
- Different probe to wafer clearance applied during soak time

Probe card behavior

- Chuck temp = 135 °C
- Measurement sites
 - Lower guide plate
 - Probe head body
 - Wafer side of PCB
 - Tester side of PCB
- Temperature gradient is present inside the whole probe card
- 2) Also assuming a full soak time is executed, probe guide plates do not reach chuck temperature

- In vertical probe cards, guide plate material is playing a major role controlling probe tip position at different temperatures
- → Guide plate material selection is key
- But considering that
 - 1. Temperature gradient is present inside the whole probe card when probing at $T \neq T$ _room
 - 2. Several different materials are used to build the probe card system and interact, each one with its set of thermomechanical properties including a specific CTE
 - 3. Probe guide plates do not reach chuck temperature (T_GP < T_chuck)

→ A wide temperature range probe card architecture capable to match wafer thermal dilatation is required

Guide plate material selection: Technoprobe solution

 A new ceramic material with CTE higher than the wafer under test ("HCTE") has been implemented to achieve probe mark shift compensation

- To this aim, different material formulations are considered and characterized in terms of
 - Physical properties (density and porosity)
 - Mechanical properties (mechanical strength, stiffness)
 - Electrical properties (resistivity)
 - Thermal and thermo-mechanical properties (thermal conductivity, CTE)
 - Laser machinability (holes quality, walls quality, drilling process time)
 - Surface finishing and appearance (surface roughness, color and reflectivity)

Guide plate material selection: Technoprobe solution

- PM shift in the range -45 °C to +150 °C is assessed
- Internal test vehicle: ~4k probes, ~90 mm array diagonal
- Method: PM executed on Accretech UF3000ex on blank wafer after full soak time

Guide plate material selection: Technoprobe solution

- Type C HCTE material has been finally qualified
 - Physical, electrical and mechanical properties are aligned with Standard material
 - Thermo-mechanical properties are matching improvement targets
 - Laser machinability with high quality is verified
 - Surface finishing and appearance are matching requirements
- Probe head architecture is optimized to accommodate it
- HCTE architecture can be applied to all vertical probe technologies in Technoprobe portfolio

Probe card configuration

- Technology : TPEG[™] T1 TA
- Parallelism : // 64
- Array size : 35x36.6 mm
- Pad Size : 41x49 μm

TPEG™ T1 TA specifications						
Radial alignment capability	6 µm					
Z planarity capability	Δ = 20 μm					
Min pitch	60 μm linear 80 μm full array					
Pin Current (CCC)	410 mA					
Force (at 75 um OT)	3.0 g					
Temperature range	-45 °C / +175 °C					
Probe alloy	LCR2					
Tip diameter (typical)	9 ± 3 μm					

Usai - Bertarelli

SWTest | Aug. 30 - Sep. 1, 2021

12

Probe card configuration

- Technology : TPEG[™] T1 TA
- Parallelism : // 64
- Array size : 35x36.6 mm
- Pad Size : 41x49 μ m \rightarrow Band guard = 6 μ m \rightarrow Allowed probing area reduced to 29x37 μ m

Probing setup & Trials description

- Prober: TEL PRECIO
- Comparison of probe Standard & HCTE probe heads, swap on same board
- Testing temperatures:
 - Trial 1: +150 °C Trial 3: +30 °C
 - Trial 2: +90 °C Trial 4: 45 °C

Soak time procedure:

- 1. 2h stabilization (probe card loaded, wafer on chuck)
- 2. 45min probe card preheat

Data collection:

- Single TDs for each temperature is executed after automatic PTPA
- Probe mark pictures captured from corned DUT
- AVI : All probe marks positions measured for all sites for each test and analyzed

Trial 1 : 150° STD vs HCTE

S1 S1 S8 **S**8 S57 HCTE S64 STD **S**57 S64 HCTE STD

Usai - Bertarelli

Trial 2 : 90° STD vs HCTE

S1 **S**8 **S1 S**8 S57 S64 STD S57 **S**64 STD HCTE HCTE

Usai - B<u>ertarelli</u>

S1

Trial 3 : Test @ 30° STD vs HCTE

S57

STD

S8

S57 HCTE

S8

S64 HCTE

S1

Usai - Bertarelli

S64 STD

Trial 4 :Test @ -45° STD vs HCTE

S1 S1 S8 **S**8 S57 HCTE **S**57 **S**64 **S**64 STD HCTE STD

Usai - Bertarelli

1	2	3	4	5	6	7	8
16	15	14	15	12	11	10	2
17	18	19	20	21	22	23	24
32	31	30	29	29	27	26	25
33	34	35	36	37	38	33	40
	47	-95	45	44	43	42	41
49	50	51	52	53	54	55	58
61	63	62	61	60	59	58	57

Analysis : Focus on site 57

At -45°c probehead STD does not retract enough

At 150°c probehead STD does not expand enough

150°

HCTE

1	2	3	4	5	б	7	8
16	15	14	13	12	11	10	2
17	18	19	20	21	22	23	24
32	31	30	29	29	27	26	25
33	34	35	36	37	38	33	40
-83	47	-85	45	44	43	42	41
40	50	51	52	53	54	55	56
61	63	62	61	60	59	58	57

Analysis : Focus on site 57

Almost same behaviour

STD

30°

HCTE

90°

SWTest | Aug. 30 - Sep. 1, 2021

20

AVI Results: testing at 150 °C

AVI Results: testing at -45 °C

150°C Align X STD/ HCTE Site 1 / Site 8

Gaussian distribution STD

Gaussian distribution HCTE

150°C Align Y STD/ HCTE Site 1 / Site 64

-45°C Align X STD/ HCTE Site 1 / Site 8

Gaussian distribution HCTE

-45°C Align Y STD/ HCTE Site 1 / Site 64

Probe mark position error comparison

 HCTE architecture compared with Standard architecture demonstrates significant improvement of PTPA alignment error due to thermal shift

Dimension	STD PH	НСТЕ РН	Absolute improvement	Alignment Error reduction
X direction @ 150 °C	-10 um	-1.3 um	∆ = 8.7 um	-87%
Y direction @ 150 °C	-8.8 um	-0.2 um	∆ = 8.6 um	-98%
Diagonal @ 150 °C	-11.1 um	-2.2 um	∆ = 8.9 um	-80%
X direction @ -45 °C	4.3 um	2.5 um	∆ = 1.8 um	-42%
Y direction @ -45 °C	2.0 um	0.0 um	∆ = 2.0 um	-100%
Diagonal @ -45 °C	8.5 um	3.0 um	Δ = 5.5 um	-65%

Conclusions

- A wide temperature range probe card architecture capable to match wafer thermal dilatation has been developed by Technoprobe
- This solution has been characterized and validated on the field in collaboration with ST Microelectronics
 - In terms of probe marks positioning, HCTE architecture compared with Standard architecture demontrates for the specific application
 - Improvement of 8 9 um at +150 °C, where average probe mark shift at corner DUT is reduced by 88%
 - Improvement of 2 5 um at 45 °C, where average probe mark shift at corner DUT is reduced by 70%
 - Combined with TPEG[™] needle technology, HCTE architecture provides a high performing solution to control probe marks alignment for large array size, high parallelism and small pads size, over a wide temperature range

Acnowledgements

ST Microelectronics France team

- Sebastien Usai
- Robert Diperi
- Erziz Salem

Technoprobe Italy team

- Emanuele Bertarelli
- Alessandro Cito
- Tommaso Masi
- Raffaele Vallauri

Technoprobe France team

- Didier Lacoste
- Jean-Paul Dubuc

[1] J. Martens et al., Full wafer probe cards for mixed signal products – SWTW 2013
[2] G. Boehm et al., Large Area High Temperature Copper Pillar Probing – SWTW 2019
[3] Y. Okada and Y. Tokumaru, Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K – Journal of Applied Physics 56 (1984)
[4] H. Watanabe et al., Linear Thermal Expansion Coefficient of Silicon from 293 to 1000 K – International Journal of Thermophysics 25 (2004)

