

Aug. 30 - Sep.

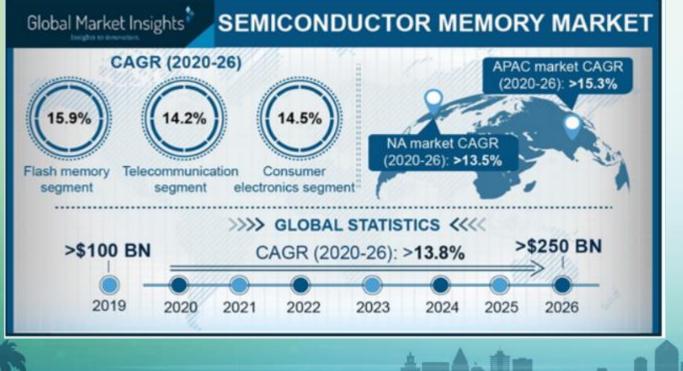
Next Generation SmartMatrix Probe Card Technology Enables 3000-Parallelism 1TD Test for D1z/D1a DRAM Process Node

SAMSUNG

Joe Ceremuga (Speaker) Director, Memory Products, FormFactor ChangHyun Cho Principal Engineer, EDS team, Samsung

SmartMatrix 3000XP: Agenda

- Semiconductor memory market demand
- 1-Touchdown wafer test efficiencies
- SmartMatrix 3000XP features and benefits
- Technical challenges solved and performance feedback
- Summary and Acknowledgements


Strong Memory Market: Continued Growth

 DRAM demand has been strong through 2020-2021, expect to continue with applications growth

Leading IC Product Segments in 2020

Sales and Revenue Growth

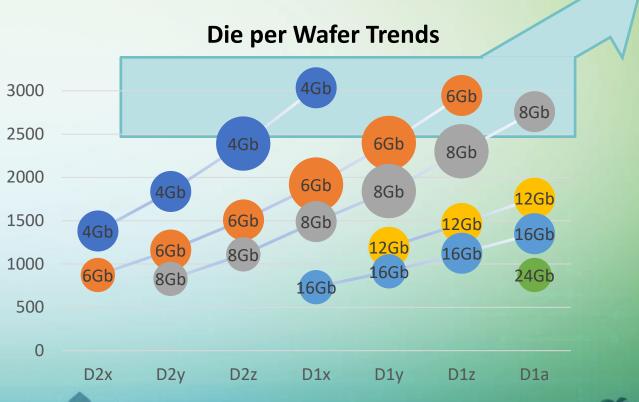
Rank	Sales	\$M	Revenue Growth	20/19 % Chg
1	DRAM	\$65,215	NAND Flash	25%
2	NAND Flash	\$55,154	Cellphone Application MPUs	24%
3	Computer CPU	\$43,848	Wired Comm—Spcl Purp Analog	20%
4	Computer and Periph—Spcl Purp Log	ic \$31,340	Computer and Periph—Spcl Purp Logic	15%
5	Cellphone Application MPUs	\$26,615	Wireless Comm—Spcl Purp Logic	12%
Sourc	e: IC Insights	Rankings apply to	IC product categories with more than \$100M in an	inual sales.

DRAM Industry Growth Prospect

- 2021-2026 9.7% CAGR
- ~\$65BN → ~\$110BN

Source: MarketWatch Aug '21

DRAM Key Applications


- Server/big data
- Mobile devices
- PC

Advancement of Die Per Wafer (DPW)

- Latest process nodes support die shrink, leading to more die per wafer
- As density grows, die may become larger, but continued nodes drive increase in DPW.

DRAM Process Roadmaps (for Volume Production)

		2015	2016	2017	2018	2019	2020	202	<u> </u>
Samsı	ung		1xnm	1ynm		1znm 1αnm			1β
SK Hy	nix	21nm		1xnm	1	rnm 1znm 1d			m
Micro	'n	20nm		1xnm	1ynm	1znm 1αnm			1β
схмт						1xnn	n		1ynm
Sourc	e: IC Insig	hts							
	J								
		PRODUCTIC	DN	2020	2022	2025	2028	2031	2034
DRAM	YEAR OF		DN	2020	2022	2025	2028	2031	2034
	YEAR OF	PRODUCTIC from above	DN	2020 2.7	2022	2025	2028	2031	2034
	YEAR OF Calculated Chip size (r	PRODUCTIC from above			2022	2025	2028	2031	2034
	YEAR OF Calculated Chip size (r	PRODUCTIC from above mm)		2.7			2028	2031	2034
4G	YEAR OF a Calculated Chip size (r DPW (cell s Chip size (r	PRODUCTIC from above mm) size*Bit/chip mm)	on 300mm)	2.7			2028	2031	2034
4G	YEAR OF a Calculated Chip size (r DPW (cell s Chip size (r	PRODUCTIC from above mm) size*Bit/chip	on 300mm)	2.7 2908	-	-	2028	2031	2034
4G	YEAR OF I Calculated Chip size (r DPW (cell s Chip size (r DPW (cell s	PRODUCTIC from above mm) size*Bit/chip mm) size*Bit/chip	on 300mm)	2.7 2908 3.8	-	- 2.7	2028	2031	2034
4G 8G	YEAR OF a Calculated Chip size (r DPW (cell s Chip size (r	PRODUCTIC from above mm) size*Bit/chip mm) size*Bit/chip	on 300mm)	2.7 2908 3.8	-	- 2.7	2028	2031	2034
4G 8G	YEAR OF I Calculated Chip size (r DPW (cell s Chip size (r DPW (cell s	PRODUCTIC from above mm) size*Bit/chip mm) size*Bit/chip	on 300mm)	2.7 2908 3.8 1,777	- 3.3 1,952	- 2.7 2,969		2031	
DRAM 4G 8G 12G	YEAR OF I Calculated Chip size (r DPW (cell s Chip size (r DPW (cell s Chip size (r	PRODUCTIC from above mm) size*Bit/chip mm) size*Bit/chip	on 300mm)	2.7 2908 3.8 1,777 4.7	- 3.3 1,952 4.1	- 2.7 2,969 3.3	2.6	2031	2034
4G 8G	YEAR OF I Calculated Chip size (r DPW (cell s Chip size (r DPW (cell s Chip size (r	PRODUCTIC from above mm) size*Bit/chip mm) size*Bit/chip mm)	on 300mm)	2.7 2908 3.8 1,777 4.7	- 3.3 1,952 4.1	- 2.7 2,969 3.3	2.6	2031	2034

1TD Wafer Test for Highest Efficiency

- A 1TD Probecard tests all devices on wafer with a single touchdown
- <u>Why</u> is 1TD Wafer Test desirable?
 - Highest wafer throughput, maximize test cell capacity
 - Do more with less capital equipment (smaller factory / footprint needed!)
 - Well-supported with recent demand.
- <u>Time benefit (1TD vs 2TD example)</u>
 - Overall Wafer Test Time reduced by 33%. This is a 50% test cell throughput increase
- <u>Challenge</u>: Maintain 1TD probe card capability as DPW continues to increase

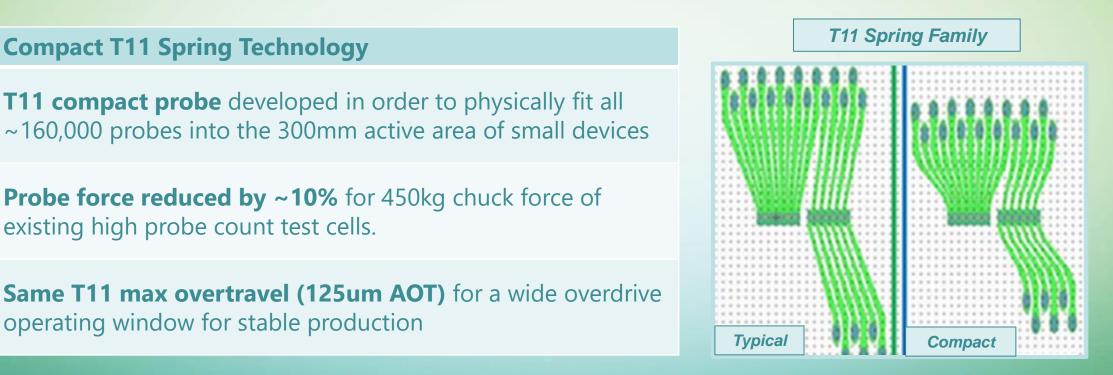
SmartMatrix 3000XP: 1TD 3000DPW Probe Card

 SM3000XP is an extension of the proven SmartMatrix probe card developed for high probe count, high parallelism, high density designs

SM3000XP Key Features	SM3000XP Benefits
FFI High Density ICs ATRE ASICs, FET modules	Resolves part placement constraint Enable physical placement of the required components to address the > 3000 parallelism requirement
FFI TTRE Terminated TRE module and test solution	Lower cost of test FFI proprietary termination solution enables tester resource sharing of up to 32 times while maintains signal performance on existing testers
High-probe count and Density 3D-MEMS springs on DUTLet	Shorter lead time Lithographically mount hundreds and thousand of probes on die as opposed to single probe bonding to substrate
Thermo-mechanical stability High-range dual temp use	Stability across temperature range T11 MEMS spring with stable coplanarity across up to 170C temperature range (-45C to 125C, typical. 150C max)

J Ceremuga, FormFactor Inc.

Key Challenges Solved for SM3000XP


- 1. **Probe density:** >160,000 total probes on small device
- 2. <u>PCB routing/component density</u>: support for >40,000 nets and components
- 3. Signal integrity and PDN: maintain speed and amplitude with sharing
- 4. Mechanical Optimization: must support existing probe card test cell
- 5. <u>Probe mark Pad Size Capability</u>: achieve scrub marks within keepout across dual temperature test range

Probe density: >160,000 total probes on small device

Developed a "compact version" of the T11 field proven probe •

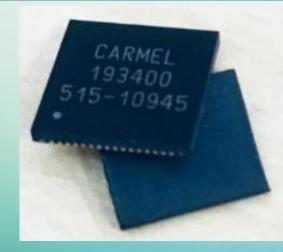
Less than 1.5mm length probe supporting 4mm die sizes or smaller

Compact T11 Spring Technology

existing high probe count test cells.

operating window for stable production

T11 compact probe developed in order to physically fit all

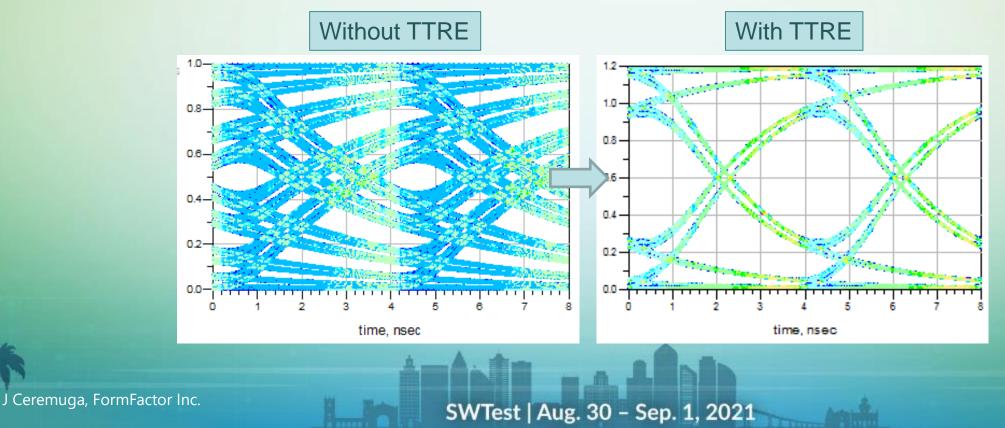

Probe force reduced by ~10% for 450kg chuck force of

PCB Routing / Component Density

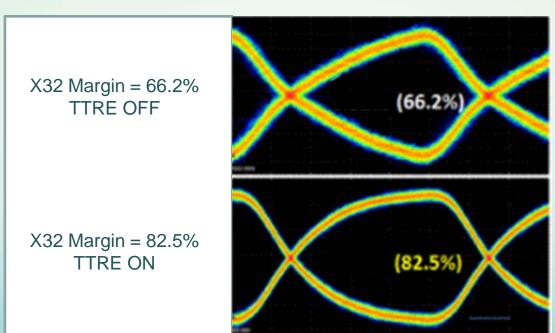
- Need to fit more technology in same probecard space
- Developed more compact and higher density switches and FETs
- ATRE share increased from x16 and x32 enables throughput increase
 - 96 site ATE tester can achieve up to 3072// with x32 share
- Improved component placement precision on FFI processes

FFI Carmel 2XDC Boost Double-density 128-Switch per Package

FFI PPS TRE x8 FET 50% Area Reduction



J Ceremuga, FormFactor Inc.

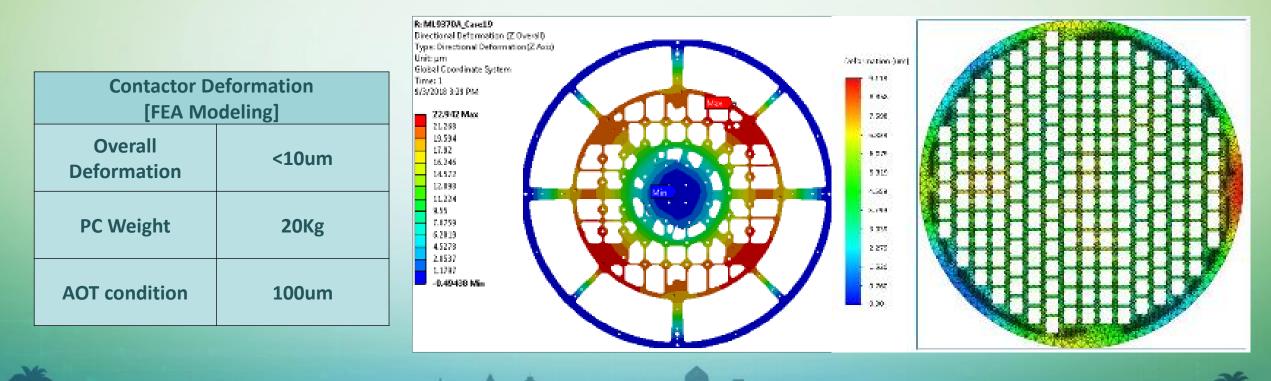

SM3000XP x32 TTRE Simulation

- SI must be capable despite extended resource sharing
- TTRE (terminated TRE) termination improves signal reflection noise at the share point, increases signal amplitude, test speed is not compromised
 - X32 probe card SI simulated performance with and without
 - Without TTRE, the transient amplitude for x32-TRE share is not sufficient

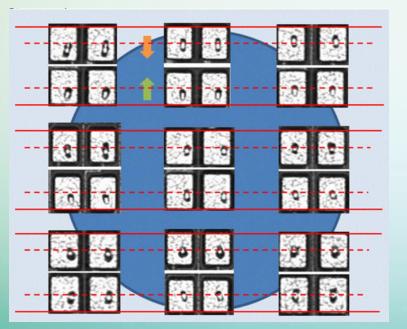
Signal Performance result – Samsung

 Extending Fan-Out / Sharing to X32: Signal transmission loss is compensated with FormFactor's ASIC.

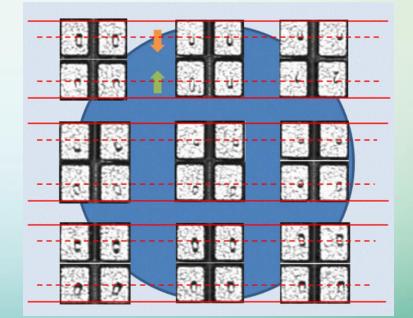
SI Performance Measurement Result


Acceptable SI performance of x32 sharing with TTRE ON

J Ceremuga, FormFactor Inc.

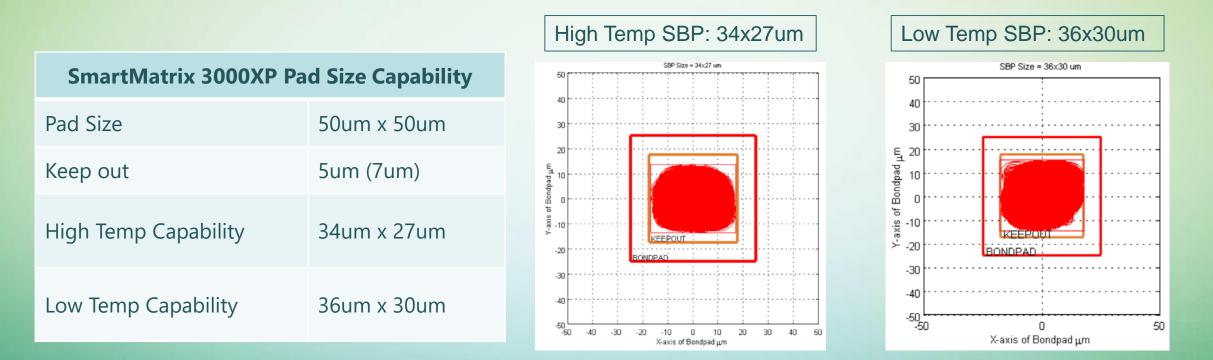

Probe card mechanical strength optimization

- Mechanical Design: Achieved <10um contactor deformation for 160,000-probe load condition
- System stiffness depends on
 - Probe card weight limitation, test head height and constraint limitation, and available space for electrical components


Probe Mark result - Samsung

- Mechanical Performance: Stable Contact Resistance achieved for ~160K probes using compact T11 probe at production overtravel
- Pad Size Capable: for both hot and cold test condition

Hot Temp Probe Mark


Cold Temp Probe Mark

J Ceremuga, FormFactor Inc.

Probe Mark Performance, Touchdown on Pattern Wafer

• <u>Pad Size Capability</u>: Probe mark keepout performance characterized on pattern wafer to ensure all required operating temperatures are satisfactory

Superior probe mark X/Y alignment and Pad Size Capability with 160k probes

J Ceremuga, FormFactor Inc.

SM3000XP Summary

• Summary

- FormFactor and Samsung have collaborated to achieve 1TD production probecard for 3000 DPW device
- The 1TD SM3000XP probecard enables 50% more wafer throughput versus 2TD probecard alternative. Total wafer test time is decreased by 33%.

SWTest | Aug. 30 - Sep. 1, 2021

Acknowledgements

- ChangHyun Cho, Samsung EDS Engineer
- MJ Lee, Cameron Harker, and FormFactor R&D Team

THANK YOU

SAMSUNG

l Ceremuga, FormFactor Inc.

Aug. 30 - Sep. 1, 2021