

5G mmWave: Multi-site RF Probe Cards Enable Lower Cost-of-Test in Mass Production

Ryan Garrison Sr. Product Business Manager FormFactor, Inc.

- 5G Rollout Update
- mmWave in the Handset
- 5G Test Metrics and Strategies in Characterization and Production
- Key Challenges Overcome
- Summary

5G is Ramping...

The world's leading economies are actively deploying 5G coverage

Over half of Smartphones shipped in 2022 will include 5G functionality

Demand ramp is soaring and will continue nonlinearly

Cellular RF Front-End Technologies for Mobile Handsets 2021 | Report | www.yole.fr | ©2021

5G Frequency Spectrum Landscape

FR1		FR2			
<1GHz 30	Hz 4GHz	5GHz 6GHz	24-30GHz	37-50GHz 64-71G	Hz >95GHz
900MHz 2.5/2.6GHz 600MHz (2x35MHz) (2x33MHz) (B41/n41)	3,1-3,45GHz 3,45-3,55GHz 3,7- 3,55-3,7GHz 3,98GHz 4,	4.94- 99GHz 5.9-7.1GHz	24.25-24.45GHz 24.75-25.25GHz 27.5-28.35GHz	37-37.6GHz 37.6-40GHz 47.2-48.2GHz 57-64GHz 64-71	IGHz >95GHz
600MHz (2x35MHz)	3.475-3.65 GHz 3.65-4.0G	Hz	26.5-27.5GHz 27.5-28.35GHz	37-37.6GHz 37.6-40GHz 57-64GHz 64-71	IGHz
700MHz (2x30 MHz)	3.4-3.8GHz	5.9-6.4GHz	24.5-27.5GHz	57-66GHz	
700MHz (2x30 MHz)	3.4-3.8GHz		26GHz	57-66GHz	
700MHz (2x30 MHz)	3.4-3.8GHz		26GHz	57-66GHz	• HUG
700MHz (2x30 MHz)	3.46-3.8GHz		26GHz	57-66GHz	• New
700MHz (2x30 MHz)	3.6-3.8GHz		26.5-27.5GHz	57-66GHz	• 600
700MHz 2.5/2.6GHz (B41/n4	1) 3. <u>3-3.6GHz</u> 4.8	-5GHz	24.7 <u>5-27.5</u> GHz	40.5-43.5GHz	• FR2 e
700/800MHz 2.3-2.39GHz	3.4- 3.42- 3.7- 3.42GHz <u>3.7GHz</u> 4.0GHz	5.9-7.1GHz	25.7- 26.5- 28.9- 26.5GHz <u>28.9GHz</u> 29.5GHz	37GHz 57-66GHz	
)	3.6-4.1GHz 4.5-	4.9GHz	26.6-27GHz 27-29.5GHz	39-43.5GHz 57-66GHz	Z
700MHz	3.3-3.6GHz		24.25-27.5GHz 27.5-29.5GHz	37-43.5GHz	
	3.4-3.7GHz		24.25-29.5GHz	39GHz 57-66GHz	

5G

crease in spectrum usage

cations in all regions

z to >**71 GHz**

Unlicensed/shared

28

Existing band

ends 5G into mmWave

5G is being designed for diverse spectrum types/bands

Source: Qualcomm

Ryan Garrison

5G mmWave in the Handset

5G mmWave RxTx Test Metrics

- 5G mmW Rx/Tx die encode data by varying phase and amplitude of RF carrier
- Error Vector Magnitude (EVM) is key performance metric for RF transceivers, including 5G mmW Rx/Tx die
- Incredibly tight phase modulation is used to steer the transmission beam

5G mmW Transceiver module is the antenna

➔ Die characterization must happen at wafer sort and requires full mmWave connectivity

Ryan Garrison

Pyramid Probe: Best Production On-wafer Signal Integrity

FormFactor x1 Card for RF Characterization

1X ATE Probe Card – V93000: full mmWave routing

Full probe card RL/IL graphs. Low loss. Repeatable.

Pyramid probe cards have low RF loss and phase stability allow for accurate characterization of mmWave RxTx EVM and Beam Steering performance

Ryan Garrison

Consistent RF Performance

- Membrane fabrication tolerances = tight distribution of RF performance
 - Low site-to-site variation
 - Low card-to-card variation
 - Low touchdown to touchdown variation
 - Low loss by design
- Customers successfully use statistical techniques like NNR and Multivariate PAT to avoid rejecting good dies

Predictable RF performance = improved die yields

Ryan Garrison

Wavelength Matters

- At 55 GHz, 1 wavelength = 5.545mm
- Structures below 1/10 wavelength act like lumped elements
 - Pyramid tips are less than 1/100 wavelength \rightarrow negligible
 - Minimal geometry changes vs. over travel and probe lifetime
- Structures above 1/10 wavelength act as distributed components
 - Pogo and vertical probes ~ ½ wavelength minimum (~2mm min length)
 - Phase shifts from touch-down to touch-down
- Consistency at each touchdown enables simple deembedding calibration methodology

Short probes are best for RF to achieve best performance

Consistency Breeds Effective De-embedding

• De-embedding defined:

 Technique used to remove the effects of the probe card and test cell from the measured s-parameters leaving behind transmission qualities of the DUT

S11 (dB) & S21 (dB) vs IEre

- Calibrated connector-to-probe-tip s-parameters measured in-factory, then de-embedded from any measurement taken anywhere
 - Customized RF test cell
 - Multipurpose calibration standard with SOL
 - 67 GHz VNA

Ryan Garrison

mmWave Device Test in Mass Production

SWTest | June 5 - 8, 2022

- **Production volume for 5G mmWave RxTx chips growing rapidly**
 - 2019: 10M units
 - 2020: 75M units
 - 2021: 248M units*
- As volume goes up, cost of test must go down
- Probe cards with increased site parallelism enable cost reductions
 - But capitalize on gains by not scaling up mmWave interface and tester resources
- Cost of test is reduced by 63% using a 4X in production, and is the current state-of-the-art for mmWave Production test

Increased parallelism is necessary. mmWave test accuracy and repeatability <u>cannot</u> be compromised.

* from Yole Développemont

Rvan Garrison

8X

(Approx. to scale)

5G TxRx in HVM Production

4X Probe Card – Ultraflex DD

4X Contact Engine (core)

Established 4X Pyramid Production Solution

- Volume production across multiple OSAT sites
- 100s of units shipped \rightarrow > 300M dies tested and counting
- 128 mmWave lines per contact engine route from DUTs to tester

Ryan Garrison

Cost Challenges of Increasing Test Parallelism

• Tester channel capability supports 3X testing max

- V93000 Wave Scale Twinning has up to 72 ports at 67GHz (2X max //)
- UltraFLEX UltraWave up to 96 ports at 67GHz (3X max //)
- Tester expense

Rvan Garrison

- mmWave ports are \$\$\$
- Probe card interface expense
 - Even at 1X, mmWave docking and interconnect is > 60% of overall probe card PCB cost
 - Scales linearly with number of interconnects

MUX Strategy to Extend Tester Capability

- **RF signals onto PCB, RF Switch matrix to** MUX/deMUX to one tester I/O
- Advantages
 - mmWave signals routed to tester
 - Full coverage of all I/O
- Disadvantages
 - Serial testing
 - High loss on PCB and in switches requires high dynamic range on tester I/O
- Challenges
 - Cutting edge RF switches are required
 - All mmWave lines need to be fully routed to PCB

Implemented on Production 4X cards running in HVM today!

Rvan Garrison

Loopback Approaches to Extend Tester Capability

PCB-level loopback

- Connect one or more I/O together on probe card PCB
- Can use attenuator to match power levels

Probe Head loopback

- Direct connect Tx to Rx at the die
- No power level matching
- Crosstalk a concern

SWTest | June 5 - 8, 2022

- Probe Head loopback with attenuation
 - High performance microwave circuits built into the Pyramid head
 - 3D field simulation = first time right

Microwave circuits in the membrane simplify the probe card

Ryan Garrison

Unique Challenges of Testing an Antenna Driver

- Antenna input impedance is rarely 50Ω in target band
 - Varying input parameters can result in contour lines on the Smith chart
 - Matching PA output impedance to antenna impedance minimizes reflections back into the device

- Pyramid Probe transmission lines can be matched to expected input impedance
 - Non-50Ω transmission lines
 - Complex impedance matching through discrete component networks
 - Impedance transitions in transmission lines
 - Transitions can occur very close to DUT

Complex impedance matching with discrete components

Transmission line impedance matching

Ryan Garrison

Practical Considerations

- CRES uniformity is the prerequisite for everything else to work
- Probe marks need to be consistent across all bumps
 - Probe tip co-planarity
 - XY tip alignment

Cleaning optimization is needed

Optimized probe mark location and depth

Learnings from 4 Generations of Production Testing 5G mmWave RxTx:

- Pyramid Probe Cards enable proven, best-in-class RF measurement through FR2 bands
 128 RF lines @ 71 GHz
- mmWave test must be low loss and consistent across all sites, all cards, and all touchdowns
- MultiDUT testing is needed to hit **cost** and **throughput** targets
- MUX and off-die loopback test strategies are used to extend tester resources in mmWave Rx/Tx production test
- 50 Ω and non-50 Ω transmission lines improve antenna testing
- Fundamental on-wafer probing challenges cannot be underestimated

Improved die yields

Reduced Cost of Test

Improved Test Value

Reliable

Ryan Garrison

Acknowledgements

Special thanks to:

- FormFactor
 - Eric Hill
 - Tim Cleary
 - Tim Lesher
 - Dr. Daniel Bock
 - Kevin Ayers
 - Robbie Ingram-Goble
 - Jiexia Shi

Production mmWave Test Requires RF Mastery

