

Automated calibration: Tackling the challenge of temperature accuracy and uniformity measurements in wafer probing

ERS

Bengt Haunerland ERS electronic GmbH

Outline

- Market outlook and calibration reliability
- Objectives
- Concept and set-up
- Results & Key Repeatability Test Data
- Strengths & Challenges
- Conclusion
- Follow-On Work

Introduction – Market Outlook

- More detailed temperature focus can be observed in wafer probing
- Test under temperature moves from final test to wafer probe
- This probing depends on accurate temperature chucks
- Thermal accuracy and uniformity requirements are increasing
- Long term chuck performance
- Validation of accuracy and uniformity
- Calibration to standard

Calibration Reliability

- ERS's CTO Klemens Reitinger presented on the ERS journey towards a more accurate and reliable measurement system in 2019
 - "Absolute temperature accuracy, a new standard for wafer testing"
- Previous focus was on the chuck System

- The reliability was calculated according to the GUM standard
- Combined Uncertainty

Bengt Haunerland

SWTest | June 5 - 8, 2022

 $U_c = \sqrt{ChuckSystem^2 + CalibrationTool^2 + Method^2}$

Measurement Wafer

Advantages:

- Fast test time
- Instantaneous uniformity data

Disadvantages:

- Sensor-to-sensor accuracy deviation
- Calibration requires high effort (lack of automation)
- Uniformity data does not reflect probing conditions
- High effort at low temperatures to reposition and maintain ice free environment
- Durability issues

Objectives

Address the weaknesses of current calibration methods

- Sensor-to-sensor accuracy deviation is a weakness
- Calibration effort is a weakness
- Operator effort required due to lack of automation

Systematically eliminate these weaknesses

- One sensor
- Easy to calibrate
- Put it into the probing area
- Automation

Enable a wafer prober-dedicated tool for temperature calibration
Goal: Reduction of the overall measurement uncertainty

Measurement Concept

- Calibrated sensor jig attached like a probe card (60)
- Touchdown by chuck motion (like wafer probing)
- Fully automated calibration process can be performed
- Chuck with multiple sensors: Positions directly above sensor can be programmed

Automation

SWTest | June 5 - 8, 2022

- No special operator skill required
- Automated software
- Measurement points can be defined
- Compatible with different prober types and chuck systems

Screenshot provided by MPI Corporation

Results Repeatability Test Data

Up to 100 touchdowns at -40°C, 20°C, 85°C and 200°C at 1 point

-40°C Repeatability Test

The observed temperature repeatability was ~20mK

Measurement done on an Accretech UF3000 prober

20°C Repeatability Test

The observed temperature repeatability was ~10mK

Measurement done on an Accretech UF3000 prober

85°C Repeatability Test

With 100 touchdowns at 85°C **~30mK** temperature repeatability over 5 hours

Over a 30 minute timeframe, ~10mK temperature repeatability is observed

Measurement done in collaboration with MPI Corporation on a TS3500

Bengt Haunerland

100 Touchdowns at 200°C

With 100 touchdowns at 200°C a gradual increase in surface temperature is observed (0.2°C over 5hrs)

Over a 30 minute timeframe, **10mK** temperature reliability is observed

Measurement done in collaboration with MPI Corporation on a TS3500

Temperature Drift 200°C

Measurement Wafer Comparison at 200°C

- Completed the same test with a measurement wafer
- Gradual heating effect is reflecting the temperature of the chuck surface

Bengt Haunerland

Temperature Drift at 200°C

1) Test environment is in a closed chamber 2) Not an air conditioned environment 3) The drift corresponds to changing environment temperature

Bengt Haunerland

Temperature Drift

- Corresponds to environmental changes in temperature
 - Coldest point during the night
 - Effect is not noticed inside the chuck, only on the surface
 - Drift is not observed below 100°C
 - Not observed in a climate controlled room
- Chuck construction is important
 - ERS Ultra Low Noise (ULN) chucks have a larger deviation than ERS Low Noise (LN or HTU) chucks

Wafer Comparison

ProbeSense™ Solution

Advantages:

- Automated testing
- Measurements in probing condition
- Highly repeatable
- Single sensor reduce accuracy deviation
- Robust and ice-free testing Disadvantages:
- Long initial settling time

Chuck

Bengt Haunerland

Measurement Wafer vs ProbeSense[™]

- Measurement wafer repeatability (method)
 - Experimentally placing wafer multiple times on chuck surface
 - 0.03°C repeatability

- Calibrated by an ISO 17025 certified laboratory
 - 0.01°C (Temperature range -60°C to 100 °C)
 - 0.02°C (Temperature range 100°C to 230 °C)
 - Calibration method
 - 0.01°C established from repeatability data

Measurement Wafer vs ProbeSense™

Calibration reliability:

- 0.058°C device uncertainty
- Method uncertainty = 0.03°C (repeatability test)
- Combined method + device = 0.065°C

Calibration reliability:

- 0.01 to 0.02°C device uncertainty
- Method uncertainty = 0.01°C
- Combined method + device = 0.022°C

Static and Dynamic Uniformity

- Static: Sensors placed on the chuck and monitored (chuck doesn't move)
 - 2022 static measurement with measurement wafer
- Dynamic: Touchdown on sensor stepping monitoring profile of DUT
 - 2022 Dynamic measurement with ProbeSense[™]
- Reproducing the results with manual handling was difficult

2022 (ProbeSense vs. wafer) MPI Prober						2022 (ProbeSense vs. wafer) ACCT Prober				
		Max	Min	Total				Max	Min	Total
30°C	Static	30.180	30.036	0.144		30°C	Static	30.34	29.710	0.630
	Dynamic	30.080	30.030	0.050			Dynamic	30.252	29.607	0.645
	Variation	0.100	0.006	<mark>0.096</mark>			Variation	0.088	0.103	<mark>0.015</mark>
85°C	Static	85.167	84.791	0.376		85°C	Static	85.824	85.269	0.432
	Dynamic	84.900	84.600	0.300			Dynamic	85.392	84.814	0.455
	Variation	0.267	0.191	<mark>0.076</mark>			Variation	0.578	0.555	<mark>0.023</mark>
200°C	Static	199.220	197.999	1.221			Static	198.95	199.6	1.01
	Dynamic	198.980	197.960	1.020		200°C	Dynamic	198.02	198.59	0.93
	Variation	0.240	0.030	<mark>0.201</mark>			Variation	0.35	0.43	<mark>0.08</mark>

Thermal Accuracy Budget

• Consider various factors

- Chuck system: Chuck sensor accuracy, temperature uniformity, thermal resistance (in chuck), environment temperature
- Calibration device/method: wafer
- +35°C reachable accuracy without calibration
 - Deviation range is 0.395°C
- +35°C reachable accuracy with ProbeSense[™] calibration
 - Deviation range is 0.274°C

Wafer Comparison

- Cold spots and hot spots in the same area
- Max sensor values deviate
 - Using GUM we get 0.070°C accuracy deviation between wafer and ProbeSense™
- Uniformity data is similar (dynamic vs. static case)
 - ProbeSense[™] gives a better uniformity since the probe card slot is smaller than the chuck on the MPI prober (shielding effect)
 - On Accretech UF3000 prober, dynamic and static is similar due to larger probe card size

Conclusion

- ProbeSense[™] is a chuck temperature calibration tool that addresses challenges of a traditional wafer-based calibration
 - Reducing the uncertainty of the calibration method through automation
 - Relying on a single calibrated sensor to improve accuracy
 - Increased temperature range of measurement accuracy
- More accurate picture of temperature uniformity in wafer probing
 - Dynamic vs. static temperature measurement

Follow-on Work

- Extending the calibration range to 300°C
- Adding a power jig to simulate the effect of power dissipation from probing
- APC compatibility to further improve automation
 - Exploring the use of different type of sensors to make it more compact
 - Exploring wireless sensor readout options

- Sebastian Giessmann and Stojan Kanev from MPI Corporation
- Klemens Reitinger, Bernd Krafthoefer, Sophia Oldeide, Flora Huang from ERS electronic GmbH

