

On Shifting Defect Detection in Quantum Chips From Cryogenic to Ambient Temperature

KU LEUVEN

1

ເກງອັ

Francesco Lorenzelli^{1,2} Roy Li¹ Erik Jan Marinissen¹ Fahd Ayyalil Mohiyaddin¹ Michele Stucchi¹ Georges Gielen^{2,1}

On Shifting Defect Detection in Quantum Chips From Cryogenic to Ambient Temperature

- Quantum computing has raised interest since 1980s
- Now quantum computing devices can be manufactured
- Devices work at cryogenic temperature (*mK*) in powerful refrigerators
- Testing at *mK* is extremely expensive
- Moving tests at higher temperatures will reduce the testing cost

Outline

- **1. Introduction to Quantum Computing**
- 2. Quantum Computing Hardware
- **3. Device Characterization Metrics**
- 4. Room Temperature Measurement of Quantum Devices
- 5. Conclusion

1. Introduction to Quantum Computing

Francesco Lorenzelli

Quantum Computing Applications

- Some problems have no efficient solution on a classical computer:
 - NP-Complete: Decision ("yes"/"no") variants
 - NP-Hard: Optimization variants
- Traveling salesman problem, maximum-2-satisfiability, factorization, ...
- Many practical applications: parcel delivery, routing of scan chain along FFs, RSA, ...
- A quantum computer can run algorithms that will drastically speed-up these problems

Classical vs. Quantum Computing

Classical Computing

- Bit
- State either 0 or 1
- State known with certainty in fault-free system

Quantum Computing

- Qubit
- Superposition of states 0 and 1
- Probability of measuring 0 or 1

Classical vs. Quantum Computing

Classical Computing

• N bits in one out of 2^N states

Quantum Computing

• N qubits in superposition of 2^N states

A quantum computer can process all 2^N states at the same time

Quantum Computing as a Service

- Quantum computers not expected to become a commodity
 - Require operation at cryogenic temperature
 - Expensive, bulky equipment
- Quantum computing
 - Will be based on shared computing resources ("cloud")
 - No high-volume testing necessary
 - Only targets specific classes of problems

• A quantum computer is not universally better than a classical computer

2. Quantum Computing Hardware

Qubit Non-Idealities

• Real qubits are not stable

Real Problems Require Large-Scale Quantum Computers

- Solving complex problems \rightarrow 10³ stable logical qubits
- Single logical qubit → 10³ redundant physical qubits
- Fault-tolerant large-scale quantum computer \rightarrow 10⁶ physical qubits

Quantum Computing Platforms

- Quantum computing theory has been known for many years
- **Recently:** focus on building quantum computing devices

Time

Diamond vacancies

- At imec:
 - **1.** Superconducting
 - 2. Silicon quantum dots
- **Operation** at *mK* in ³He/⁴He dilution refrigerator

• Qubit: Spin of a single electron in silicon

- Quantum dot: Area where the electron is confined
- Qubit manipulation: Microwave pulses with ESR antenna
- Qubit readout:
 Single Electron Transistor

Francesco Lorenzelli

- Qubit: Spin of a single electron in silicon
- Quantum dot: Area where the electron is confined

- Qubit manipulation: Microwave pulses with ESR antenna
- Qubit readout: Single Electron Transistor

Francesco Lorenzelli

- Qubit: Spin of a single electron in silicon
- Quantum dot: Area where the electron is confined

- Qubit manipulation: Microwave pulses with ESR antenna
- Qubit readout: Single Electron Transistor

- Qubit: Spin of a single electron in silicon
- Quantum dot: Area where the electron is confined

- Qubit manipulation: Microwave pulses with ESR antenna
- Qubit readout: Single Electron Transistor

- Qubit: Spin of a single electron in silicon
- Quantum dot: Area where the electron is confined

- Qubit manipulation: Microwave pulses with ESR antenna
- Qubit readout: Single Electron Transistor

3. Device Characterization Metrics

Francesco Lorenzelli

Interface Disorder Main Limiting Factor

• Main source of noise: Si/SiO₂ interface disorder

Francesco Lorenzelli

Coulomb Blockade Effect

- Interface disorder characterized with quantum dot metrics
- Working principle: Coulomb blockade effect at *mK*

Limits of Quantum Dot Metrics

- Based on Coulomb blockade effect at *mK*
- Measurement in ³He/⁴He dilution refrigerator
 - Long cooldown times (~12h)
 - Contains few devices
 - Expensive equipment

From Quantum Dot to Transistor Metrics

- Measurement at higher temperatures
 - No dilution refrigerator needed
 - Reduce long cooldown times by 87%
 - Measure 30× devices
- Cryogenic wafer probers at 4K

Francesco Lorenzelli

- Measurement of long quantum dot arrays
 - Multiple gates on multiple gate levels
 - From 3 up to 8 quantum dots

- Transistors with multiple gates
- Statistical analysis of V_{th}, SS, g_{max}
- I_dV_g curves extracted for each individual gate

- Transistors with multiple gates
- Statistical analysis of V_{th}, SS, g_{max}
- I_dV_g curves extracted for each individual gate

- Transistors with multiple gates
- Statistical analysis of V_{th}, SS, g_{max}
- I_dV_g curves extracted for each individual gate

- Transistors with multiple gates
- Statistical analysis of V_{th}, SS, g_{max}
- I_dV_g curves extracted for each individual gate

Conclusion

- Quantum computers will speed-up classically intractable problems
- Silicon spin qubits are a promising platform
- Si/SiO₂ interface disorder is the main limiting factor for Si spin qubit devices
- Interface disorder mainly characterized with quantum dot metrics at *mK*
- Transistor metrics can be used for interface quality assessment at T higher than mK
- Testing more devices with shorter cooldown times to reduce testing cost
- Currently investigating interface disorder of test structures through transistor metrics