

Technoprobe Corporate Introduction

TP Communication Team

Innovation begins with Us

A leading company in the field of semiconductors and microelectronics

Our numbers*

10	23	3	+60	00	4
Countries where we are present	Legal en	tities	Proprie	etary	R&D
	Worldw	/ide	pate	nts	Centers
3,355		1,724		44%	
Employees		Employees		Personnel	
Worldwide		in Italy		under 30 in Italy	

What we do

Technoprobe develops testing solutions for chips, the electronic hearts that bring to life the world of today and build that of tomorrow.

Company Overview

The markets we serve

What we do

Technoprobe operates both in wafer-level testing and in final testing.

A successful and vertically integrated business model

A wide range of highly innovative technologies

Advanced micromachining

Advanced laser cutting: high accuracy and fast lead time

Thin film

Strong investment in advanced thin film technology to reduce lead time and improve quality and complexity

3D MEMS

Acquisition of MICROFABRICA in 2019; the sole company in the world specialized in 3D metallic MEMS manufacturing

Advanced manufacturing

Advanced manufacturing for high volume and best quality assembly of micro components

New technologies development

+600 proprietary patents

Who we work for

Our clients

Technoprobe is a strategic partner for the world's leading semiconductor companies.

Important players like...

Our reputation

For the seventh year in a row (2018-2024), we are the Highest-Rated Test Subsystems Supplier in the TechInsights Customer Satisfaction Survey.

Our reputation

TSMC's Excellent Performance Award 2024 From 2018 to 2024 Best Probe Card supplier worldwide* From 2020 to 2025 Intel EPIC Supplier Award

Worldwide presence

3 Continents10 Countries23 Legal entities

Our evolution

1996-2024 Revenues evolution (€m)

Our evolution

Technoprobe worldwide - 2010-2024: headcount evolution*

Mastering Emerging Probing Challenges

The Power of Agile and Continuous Innovation

Raffaele Vallauri VP Director @ Technoprobe

SWTW Conference 2025, San Diego

Agenda

- The Inflection Point Setting the stage for unprecedented semiconductor complexity
- The Probing Challenge Understanding the technical hurdles and development bottlenecks
- **The Agile Imperative** Shifting towards Lean, Agile, and Collaborative solutions
- Accelerating Innovation Leveraging Concurrent Engineering, Simulation, and MVP approaches
- Insights from Parallel Worlds Lessons in rapid adaptation (F1, Aerospace)
- Impact & Path Forward Achieving faster TTM, higher reliability, and a call to action

Semiconductor Industry at Inflection Point

AI, HPC, Automotive

drive exponential device complexity

Zettabyte Era

demands higher wafer testing precision

Emerging Technologies

push innovation boundaries

Wafer test/probing are more and more critical path enablers. We need to deliver Value faster than ever.

PROBLEM: Unprecedented Probing Challenges

Ultra-fine Pitch

Pitches below 30 μ m down to 10 μ m, micro-bumps, and hybrid bonding require extreme precision (ref. Tadayon/Parks)

High-Speed Interfaces and Power Delivery

Interfaces exceeding 100 Gbps/lane demand superior signal integrity, together with High current, low impedance and thermal hotspots (ref Miller/Stork/Parks)

3D Structures

New materials and complex 3D architectures create testing barriers (ref Slessor/Parks/Tadayon)

Development Timelines

Vendors face rapid innovation cycles with limited pre-deployment validation

PROBLEM: The Probe Card Vendor's Dilemma

Challenges for probe card developers:

- IC innovation cadence outpacing traditional hardware development cycles.
- Shrinking windows for test/validation before customer high-volume manufacturing (HVM).
- Escalating demands: Performance (SI/PI), Reliability (lifetime, CRES), and Cost.

Extended Lead Times

Delays in development and delivery

X

High NRE Costs

Increased engineering expenses

Reduced Flexibility

Limited adaptation capabilities

Increasing requirements lead to development complexity with more probe types and tighter specifications. Traditional methods risk becoming bottlenecks.

The Bottleneck of Traditional Development

Traditional Approach

- Rigid sequential processes
- Limited collaboration
- Fixed specifications
- Reactive development

Limitations

- Late discovery of issues = High Cost of Change
- Limited flexibility to adapt. Siloed Teams
- Inherent waste "Muda": Waiting, rework, overprocessing...
- Risk of becoming the critical bottleneck in overall semiconductor TTM

VISION - Shifting the Development Paradigm: Towards LPPD* & Agility

Traditional Approach

- Rigid sequential processes
- Limited collaboration
- Fixed specifications
- Reactive development

New Vision

- Dynamic adaptive models
- Deep partnerships
- Evolving requirements
- Anticipatory innovation

From rigid, sequential processes to dynamic, adaptive, collaborative models rooted in LPPD* and Agile principles. Towards an ecosystem where probe innovation (driven by skilled people, aligned processes, adapted tools) keeps pace with semiconductor advancements.

* LPPD : Lean Process & Product Development

Adapting LPPD/Agile Core Principles to PC

- **Define Value**: Deeply understand customer needs & tradeoffs upfront (Nemawashi)
- Iterative Cycles: Rapid Design-Build-Test-Learn loops (like the "Kindergarten process" above)
- Focus on "learning fast"

SOLUTION: Agile, Lean Principles & Concurrent Engineering

Agile/Lean in Semiconductor Giants: Industry Examples

How leading semi companies apply similar principles:

- Platform Strategy: Iterated core architectures (Ref : Intel, Nvidia)
- Concurrent Engineering: Intense co-design (Ref: Apple Silicon)
- Rapid Cadence & Supplier Integration: quick node deployment (Ref: TSMC)
- Modular Design & Standard Interfaces: Chiplet ecosystems (Ref: TSMC, AMD, Intel ...)

https://youtu.be/UdhWvg5mycY

Early Collaboration & MVP Testing

Deep partnerships enable Minimum Viable Product probe cards for rapid feedback before full-scale development.

Learning from Parallel Worlds: F1 racing

Rapid Iteration & Data-Driven Adaptation

- F1 teams design, simulate, build, and test car updates between races (weekly sprints).
- Massive reliance on telemetry data and simulation for performance tuning.
- Modular designs allow rapid component swaps/upgrades.
- Extreme cross-functional team collaboration
- High pressure, rapid learning cycles

Parallel to Probing

 Need for rapid design iterations based on wafer test data, modular probe head concepts, tight vendorcustomer feedback for tuning, high performing crossfunctional Teams

Learning from Parallel Worlds: Aerospace

Managing Complexity, Reliability & Long Lifecycles

- Aerospace uses digital twins for design, predictive maintenance, and upgrade planning over decades.
- Complex systems integration across vast supply chains using standardized interfaces and rigorous validation.
- Extreme reliability requirements drive simulation and fault tolerance.

Parallel to Probing

- Need for predictive probe lifetime/maintenance models, simulation for reliability under stress (thermal, mechanical).
- Managing complex system interactions

IMPACT: Accelerating TTM & Innovation

Development Cycle Reduction

Potential time savings with agile methodologies

Response Speed

Faster adaptation to new IC designs

"Normal" Engineering	S					
Requirements	Design Implementation Verification Production					
Concurrent Engineering						
Requirements						
De	Implementation					
	Verification					
	Production Lead Time Reduction					

Unlocking faster innovation across the semiconductor ecosystem by removing test hardware bottlenecks.

Iterative refinement and early feedback lead to solutions meeting extreme specifications for speed, pitch, power, and lifetime.

IMPACT: Enabling Performance, Reliability & Cost-Effectiveness

Iterative refinement & SBCE ensure solutions meet extreme performance specs and customer Value

Enhanced reliability from early validation & robust convergence Achieving this cost-effectively by eliminating waste, optimizing processes, and focusing development effort

Co-Creating the Future of Test

Reiterate the opportunity: Transform probing challenges into catalysts for collective innovation using LPPD/Agile principles

