

Enabling the Semiconductorization of Photonics

Scott Jordan
PI

The PI Group

- ~1700 Employees
- 15 Subsidiaries
- Design & Service Centers in USA, Asia, Europe
- >100 man Years of Alignment Expertise
- Privately Owned Not
 Driven by Quarterly Results
- Focused on Long Term Relationships w/Customers & Suppliers

The PI Group

Pl's Engineered Systems Group Builds World-Class Automation Platforms

There's really only one trend...

Throughout: Latest available data from credible sources, with links to source

AI: The new accelerant

Mainframe

1980		1990		2000		2010		2020		2030	
Company	Mkt cap (USD bn)	Company	Mkt cap (USD bn)	Company	Mkt cap (USD bn)	Company	Mkt cap (USD bn)	Company	Mkt cap (USD bn)	Company	Mkt cap (USD bn)
IBM	38	IBM	54	Microsoft	604	Microsoft	269	Apple	2,232		
Eastman Kodak	8	Panasonic	33	Cisco Systems	355	Google	197	Microsoft	1,682		
Xerox	5	Toshiba	27	Intel	274	Apple	191	Amazon	1,634		
Hewlett- Packard	4	NEC	19	Lucent Technologies	238	IBM	171	Alphabet	1,185		
Emerson Electric	2	Fujitsu	19	Nokia	210	Cisco Systems	138	Facebook	778	4	2
Texas Instruments	2	Mitsubishi Electric	16	IBM	193	Oracle	123	Tencent	698		
Motorola Solutions	2	Eastman Kodak	13	Oracle	158	Hewlett- Packard	122	Tesla	669		
Nortel Networks	2	Sanyo Electric	13	Nortel Networks	139	Intel	113	Alibaba	649		
Intel	1	FUJIFILM Holdings	12	Sun Microsystems	135	Samsung	88	Samsung	501		
Harris	1	Hewlett- Packard	11	Dell	130	QUALCOMM	77	TSMC	489		

"Often, when a major platform shift occurs — think mainframes to minicomputers, PCs to mobile devices, CPUs to GPUs (central processing units to graphics processing units) — it creates entirely new pools of demand. In the next few years, we expect a record pace of new, densely packed, high powered data center builds. These will be filled with GPUs, custom silicon, advanced memory packages and photonics to support network bandwidth."

--J.P. Morgan Asset Management, 10/2023

mm-scale to planetary scale, humanity's appetite for data drives Photonics

"...a chip maker could build a co-packaged optical transceiver on to the edge of a package, and then use UCIe to connect it to another chiplet..." --Anante h

"Good ideas are always crazy until they're not."

mm-scale to planetary scale, humanity's appetite for data drives Photonics

"...a chip maker could build a co-packaged optical transceiver on to the edge of a package, and then use UCIe to connect it to another chiplet..." --Ananchip

Observation:

Silicon Photonics is not just about the data center anymore

mm-scale to planetary scale, humanity's appetite for data drives Photonics

"Introducing inter-chip optical interconnects could obliterate bandwidth and capacity limitations coming from today's copper interconnects, which are hampered by impedance mismatches between the CPU and the dual-inline memory modules."

-- Dongjae Shin, Samsung, at PIC 2019

Driving Photonics: New applications

→ no single point of market failure

(Source: Silicon Photonics 2021 report, Yole Développement, 2021)

What this means:

Fasten your seatbelts

3-order-of-magnitude ramp!

The photonics industry
faces a gut check as its
past success drives future
demand at a scale and pace
that the industry will be
challenged to meet.

Fasten your seatbelts

Photonics Spectra Cover article

C New investments in technology and packaging capacity will be essential before the silicon photonics era can get fully underway.

What this means:

34th SWTest Conference | Carlsbad, CA, June 2 - 4, 2025

These are Early Days

Parallels to 1980s chip industry:

- Ecosystem just being born
- Custom equipment
- In-house and captive integrators

Fast forward to today:

You can build a fab by writing POs

Alignment: The Repetitive Cost

"Automated High-Throughput Assembly for Photonic Packaging", Barwicz et al, *Photonics Summit*, Cadence, 2017,

https://www.cadence.com/content/dam/cadencewww/global/en_US/documents/company/Events/summits/photonics/fortier-2017.pdf

"Process-based cost modeling of photonics manufacture...", E. Fuchs et al, J. Lightwave Tech., 2006,

https://www.semanticscholar.org/paper/Process-based-cost-modeling-of-photonics-the-cost-a-Fuchs-Bruce/125e24b2e2e71860f088526441ee5ce16e6ce42c

These are Early Days

The way forward:

- 1. Automation
- 2. Innovation
- 3. Cooperation

These are Early Days

The way forward:

- 1. Automation
- 2. Innovation
- 3. Cooperation

After Motion Control: Micro-Robotics

Built-in functionality and intelligence mark the future (and not just for motion control)

Courtesy Bloomberg
"Driving a Ford Model T Is a Lot Harder Than You'd Think!"

Courtesy Tesla "Full Self-Driving"

"Do what I tell you to do"

- Accelerate
- Brake
- Turn...

"Do what I <u>want</u> you to do"

Go to Aldi

"10 exabytes per month"

A Modular Approach to Meet all Needs

Hexapods

- Trajectory is not defined by bearings
- Compact, 6 degrees-of-freedom, rigid
- No moving cables

Stacks

- Modular
- ACS controls

Both

Rotate about optical channel, focus, etc.

Use Nanocubes:

- For speed
- For tracking
- For resolution

Nanocubes & Air Bearings

 Long lifetime, zero maintenance, no lubrication, nanometer resolution, high dynamics

ΑII

- Leverage proven technologies
- Firmware-based alignment
- Parallel alignment processes

The Solution Spectrum

- Hexapod Micro-Robots
- Piezo Nanopositioners
- Wide range of novel mechanical bearing options
- Unique: High-Speed Air Bearing stacks for Alignment
- New NovAlign Fast Compact 4- or 6-DOF aligners

Automation Solutions

34th SWTest Conference | Carlsbad, CA, June 2 - 4, 2025

These are Early Days

The way forward:

- 1. Automation
- 2. Innovation
- 3. Cooperation

Pl's Novel Parallel Multi-DOF Optimization

Unique: Air Bearing Fast Alignment Engines

Super cleanliness
Zero maintenance, Zero wear
Highest MTBF

Fast Area Scan

- First light acquisition
- Profiling & characterization

Parallel Gradient Search

- Fast Optimization
- Real-time tracking across multiple
 DOFs
- Drift compensation
- Lock-on

NEW: Revolutionary Fast First-Light Acquisition

PlLightning: Solving the <u>First-Light Problem</u>

Now:

- Typ. >10X faster first-light acquisition
- Even higher gains for double-sided firstlight acquisition
 - Parallel first-light seek! Typ. <1sec
- Single command, fully autonomous, respects soft limits
- Integrated with full FMPA alignment suite

NEW: Revolutionary Fast First-Light Acquisition

PlLightning: Solving the <u>First-Light Problem</u>

NEW

PILightning™ Fast First-Light Seek Fast Area Scans for Peak Selection, Profiling, Centroid Calculation Fast Parallel
Gradient Search
for Full
Optimization

Across I/Os, Channels, DOFs, Elements

These are Early Days

The way forward:

- 1. Automation
- 2. Innovation
- 3. Cooperation

The Ecosystem Emerges: Contract Manufacturing

The silent partner

- Photonic-competent players exist
 - Example: Fabrinet >
- Scalability
- Global presence
 - Geographically strategic

Optical Contract Manufacturing

fabrinet[®]

- Optical CM's, such as Fabrinet, have been around for 25 years
- Fabrinet is a trusted manufacturing partner of most of the industry OEM's
- Fabrinet can support from NPI to scaling for volume production
- They provide high quality, competitive costs, and global supply chain
- They are now supporting leading edge SiPh packaging

Fabrinet Confidential

The Ecosystem Emerges: Systems Integrators

The builders

- Custom tools to accomplish missioncritical tasks
- From concept to scale
 - Example: Averna →

Summary: The Deluge Approaches

- Many, many new applications
- 3 order-of-magnitude volume scaling
 - Consumer applications now in the game
 - Serious challenges to scale
 - Interconnect technology and testing must keep pace
 - Yields must improve
- "Silicon photonics" is key to to technology's future

PI is here to help

- Enabling semiconductor manufacturing since its infancy
- Enabling genomics automation since its infancy
- Enabling silicon photonics since its infancy

- Today, optics is a niche technology.

 Tomorrow, it's the mainstream of every chip that we build.
 - --Pat Gelsinger, 2005, MIT Technology Review

Keep in touch!

PI USA HQ 16 Albert St Auburn, MA, 01501

Email info@pi-usa.us Visit us: www.pi-usa.us

PI Germany HQ Auf der Roemerstrasse 1 76228 Karlsruhe, Germany

Email info@pi.ws Visit us: www.pi.ws

Practical Examples of Parallel Alignment Automation Ask for a free **Tech Note** on Parallelism in **Optimization**

 \mathbf{PI}