

First Silicon Photonics High Speed (up to 67GHz) Wafer Probe Card Demonstration for S-Parameter Testing on the Production Wafer

Hsu Hao (Andy) Chang - Marvell

Amit Agnihotri - Marvell

Don Lee - Marvell

Andrew Yick - Marvell

Giulia Rottoli - Technoprobe

Carlo Madè - Technoprobe

- Motivation
- Objective
- Methodology
- Results
- Summary

- Motivation
- Objective
- Methodology
- Results
- Summary

What is Silicon Photonics and Why?

- Optical signal in Silicon
 - Prominent in communication
- High bandwidth
- Highly integrated channels
- Scalability
- Low latency (No RC limits)
- Energy efficiency

Integrated Silicon Photonics Demands Known Good Die

Known Good Die

- A Must for Silicon Photonics Integration
- High Complexity of Silicon Photonics Modules (112Gbd, 224Gbd application)
- Integration of photonics + electronics (e.g., lasers, modulators, drivers, TIAs)

Risk of Using Unverified Die

- Yield loss propagates to entire module
- Debugging is complex and costly
- Scrap and rework risk increase significantly

- Motivation
- Objective
- Methodology
- Results
- Conclusion

Key Tests for Silicon Photonics Wafer Screening

- DC
- RF
 - EO/OE/EES parameter

Wedge Probe

- Limited accessible pads
- Small pad alignment challenging
- Frequent manual adjustment

Probe Card (This Work)

- High channel counts testing
- Work for both bumped and pad wafers
- Random pad patterns
- Parallelism & throughput
- Alignment accuracy
- Key solution for Silicon photonics wafer HVM testing

Silicon Photonics Chip with Random Pad Pattern

- Motivation
- Objective
- Methodology
- Results
- Summary

High Speed Silicon Photonics Wafer Probe Card

Top View

RF Connectors

Bottom View

Vertical Probe Card

Probe Card with FCI transition

• The FCI (Flex to Coax Interface) transition allows the direct transition from flex to coax cables without going

through PCB tolerance changes

Probe Card with FCI transition

- Return loss < 13 dB up to 67GHz
- Insertion loss < 10dB up to 67Ghz

Test Setup

34th SWTest Conference | Carlsbad, CA, June 2 - 4, 2025

- Motivation
- Objective
- Methodology
- Results
- Summary

Experiment Data (DC)

MZM Optical Extinction Ratio

Experiment Data (RF) - Wedge vs Probe Card

Good RF Measurement Correlation up to 67GHz

Experiment Data (RF) - Wafer Screening Results

Photodetector Bias (Volt)

Summary

- First high-speed Silicon Photonics wafer probe card demonstrated
 - Good DC measured data at wafer scale
 - Good RF measured data at wafer scale
 - Up to 67Ghz
- Silicon Photonics production wafer high speed testing enabled
 - Key milestone for Silicon Photonics production
 - Important for modern Silicon Photonics integration
- Future work
 - Integrate passive optics to the probe card

Marvell & Technoprobe