

MEMS Probe Card Solution to Address Parametric Test Challenges

Mukesh Selvaraj, Apoorva Dube, Judd Gerber, Philip Tavernier, Sanjay Bidasaria FormFactor and Intel

Agenda

- Introduction/Problem Statement
- MEMS Probe Card Requirements
- Probe Card Architecture
- Probe Design
- Probe Down-Selection
- Contact Force for Stable CRES
- Scrub Performance
- Probe Assembly; Pad Size, Layout and Pitch
- Qualification Results
 - Key Issues/Challenges
 - Contact Resistance for different pad metallurgy
 - Lifetime Results for different pad metallurgy
- Summary and Conclusion

Introduction/Problem Statement

- Test engineers leverage parametric testing to
 - Enhance semiconductor device quality
 - Monitor and control process variations
 - Boost production yield and minimize material waste
 - Help lower overall manufacturing costs
- Parametric probe cards face increasing pressure to deliver ultra-precise, repeatable, lowdamage electrical contact with high reliability
- Probe card requirements for parametric testing
 - Ensure ultra-low leakage currents for accurate measurements
 - Utilize robust contact technology to safeguard wafer integrity
 - Deliver high reliability and consistent performance over extended use
 - Support yield enhancement and waste reduction
 - Enable faster time-to-market by reducing lead time for new designs

MEMS Probe Card Requirements

- Smaller Pad size and Pitch
 - <=40µm pitch requires smaller probe cross section
- Low force 2D MEMS springs
 - Reduces risk of pad damage
- Very low scrub ratio < 7%
 - Low scrub marks is critical to achieve smaller pad size
- Low particle generation
 - Tip to beam clearance >250µm is critical
- Works across different pad surfaces
 - Stable low CRES required for variety of pad metallurgies for Al, Cu, Inline and Solder
- Constant probe tip length
 - Tip size needs to be consistent across Beginning of Life (BoL) and End of Life (EoL)

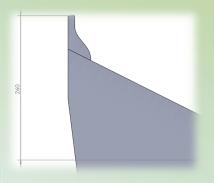


Fig. 1 – Tip to Beam Clearance

Attribute	Value
Pad Size	25x25 μm
Pitch	40 μm
Max OT	150 μm
Operating OT	100 μm
Scrub Length	<15 μm
Leakage	<0.5 pA
Pad Layout	Flexible
Pad Material	Al, Cu, Solder, Cu Pillars, Ti, Nb, etc.

Probe Card Architecture

- A novel MEMS probe card architecture was designed and developed to meet the demanding parametric test requirements
- Interchangeable probe heads built with ultra high precision MEMS probes
 - Capable of exchanging different probe head designs on-site using a common PCBA
 - MEMS probes with fine pitch capability, low force, low scrub ratio and stable Contact Resistance (CRES) developed
- Key Benefits
 - Reduced lead-time
 - Flexibility of asset utilization
 - Lower cost
 - Maximizes Total Cost Of Ownership (TCOO)

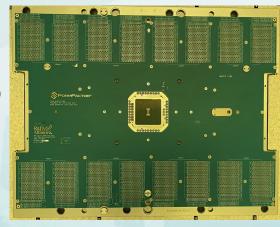


Fig. 2 - MEMS Probe Card

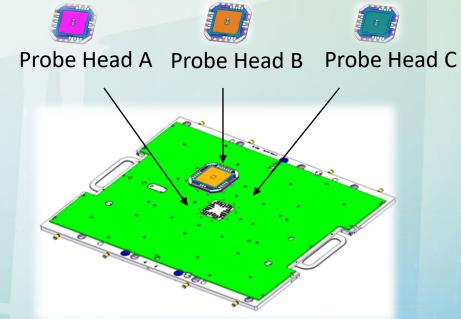


Fig. 3 – MEMS Probe Card with Interchangeable Probe Heads

Probe Design

- Input parameters/ factors to consider
 - Optimal MEMS metallurgy
 - Superior thermo-mechanical properties
 - High yield strength
 - Optimal Young's modulus
 - Dimensions/size of the probe
 - Ease of fabrication
- Output parameters
 - Desired maximum stress at maximum Over-Travel (OT) with sufficient margin
 - Appropriate contact force ~ 2.5-4.5g at operating OT
 - Desired total scrub length ~ 12-15 μm
- All the above parameters determined through FEA
 - Optimized probe design selected from an iterative process
 - Best candidate was down selected for fabrication

Fig. 4 – Optimum probe design criteria

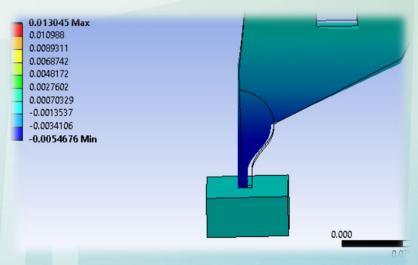


Fig. 5 - Scrub Length as per FEA

Probe Down-Selection

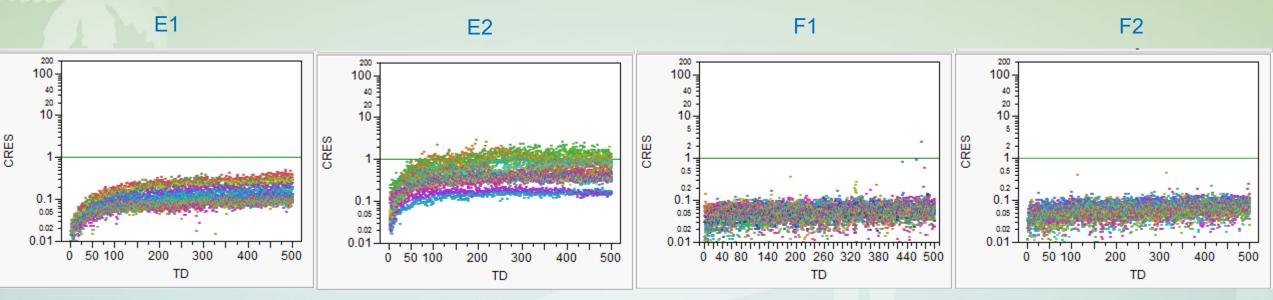


Fig. 6 – CRES data for Probe E1, E2, F1 and F2

- Contact Resistance (CRES) and Scrub mark data was collected for different probe designs at maximum Actual Overtravel (AOT) of 150µm
- Stable CRES was demonstrated for 500 production touchdown (TD) cycles without any cleaning
- Down selected E1 based on CRES and scrub performance
- F1 and F2 had longer scrub length which will not meet customer's small pad size requirement

Probe Down-selection - CRES

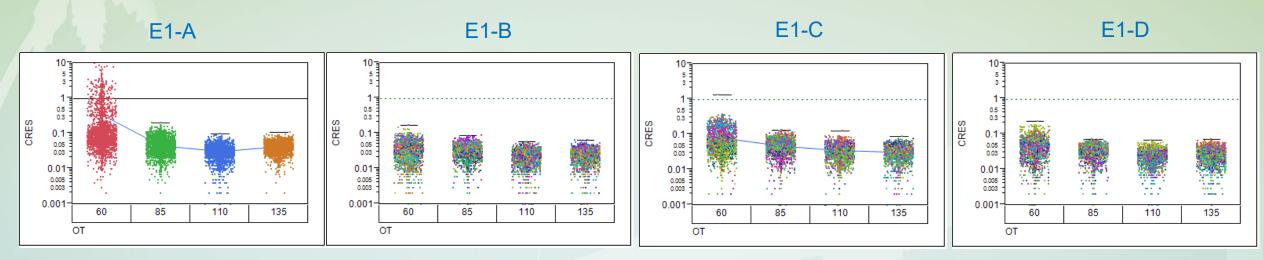


Fig. 7 – CRES data for the variants of probe E1

- Above are the 4 variants of E1
- 3 of the 4 candidates pass CRES even at 60μm OT
- E1-D was down-selected for Cu, Cu Pillar, Solder, Aluminum pads

Contact Force for Stable CRES

- Contact Force needs to be optimized for low pad damage and stable CRES
 - Low contact force would lead to high CRES and hence, undesirable
 - High contact force though would provide a low CRES but could damage the customer pads
 - E1-D probe's contact force was optimized for stable CRES and low scrub ratio using FEA
- Pad material also influences the CRES performance and accordingly the probe design needs to account for the contact force
- For Titanium pad, increase in contact force is critical as shown in Fig. 8 but scrub length is similar ensuring no damage to the pad
 - E1-B was down-selected for Ti pad
- Good correlation between FEA and experimental data as shown in Fig. 9

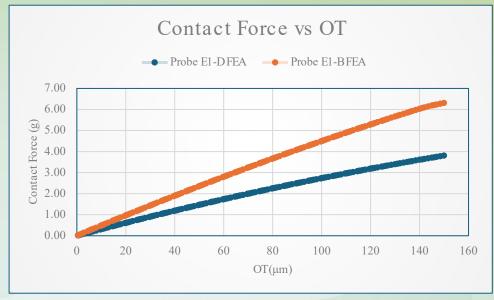
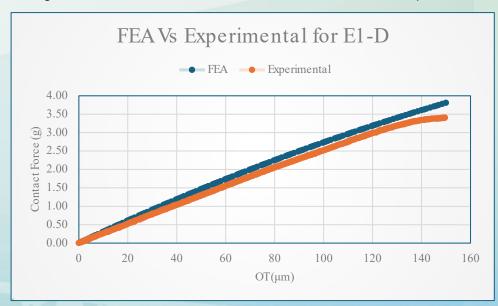



Fig. 8 – Contact Force Vs Overtravel for E1-D and E1-B as per FEA


Scrub Performance

- Scrub ratio refers to the scrub length with respect to the amount of overtravel
- A consistent predictable scrub ratio is critical for electrical performance
- Scrub ratio: 6.5%
- Scrub depth analysis shows very low punch through on the pad
- Low scrub ratio without pad damage is paramount for very small pad applications

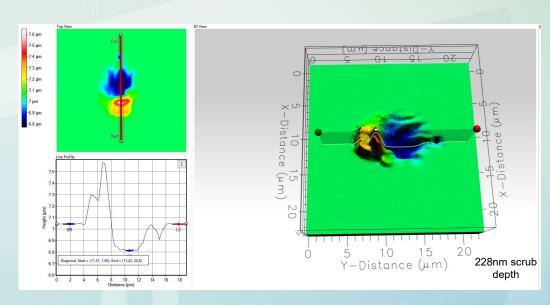


Fig. 12 – Scrub Depth Analysis

Probe Assembly; Pad Size, Layout and Pitch

- MEMS probe assembled using ultra high precision automation tool
- Probe attachment methodology enabling fine pitch solution at 40 μm pitch developed, 20 μm capability in progress
- Pad head to head clearance significantly reduced to 10μm
- Improvement in MEMS probe tip placement accuracy in X,Y and Z
- Flexibility in pad layout and enables high parallelism testing

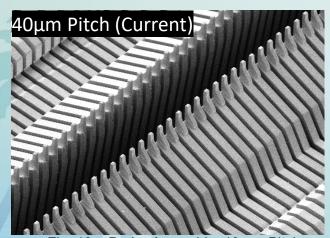
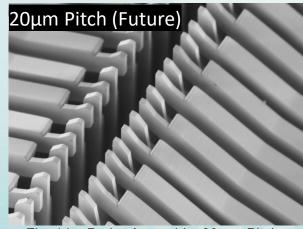
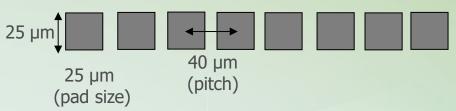
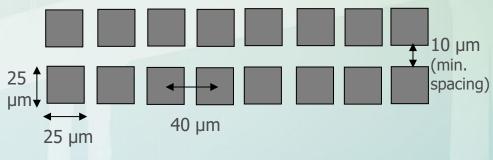
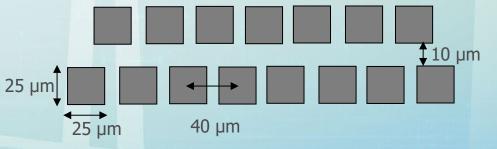


Fig. 13 – Probe Assembly; 40 µm Pitch


Fig. 14 - Probe Assembly; 20 µm Pitch

34th SWTest Conference | Carlsbad, CA, June 2 - 4, 2025


Single Row Layout Capability

Dual Row, Inline Layout Capability

Dual Row, Staggered Layout Capability

Qualification Results - Key Issues/Challenges

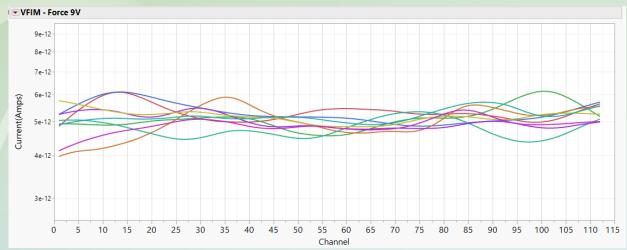


Fig. 16 - Probe Card Ultra low leakage Data

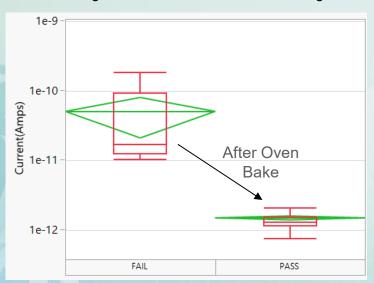


Fig. 17 - Random low leakage failure and fix

Initial evaluation samples passed Intel test requirements

Random Low Leakage Failures

- Observed few random low leakage failures during qualification and ramp
- Low leakage was attributed to moisture build up on PHs
- Onsite oven bake on failed PHs showed that the leakage can be reduced
- Implemented outgoing bake process on PH as standard practice to reduce leakage failures
- Implemented flux-free PH process to further reduce chance of leakage failures

Qualification Results - Lifetime Data on Copper Pillar

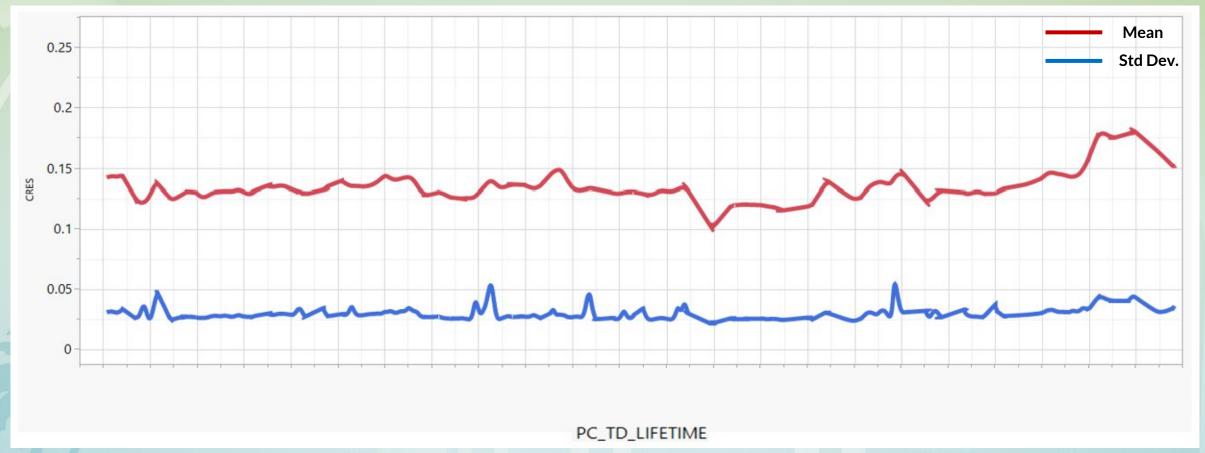


Fig. 18 – CRES and Lifetime Data on Cu Pillar

- Probing surface Cu Pillars
- Lifetime > 1 million TDs

Qualification Results - Lifetime Data on Copper Pad

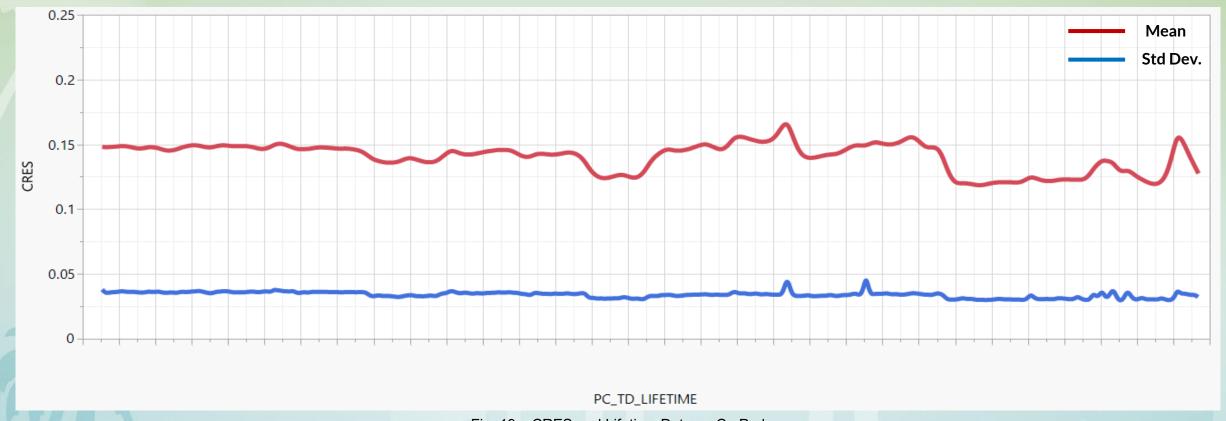


Fig. 19 - CRES and Lifetime Data on Cu Pad

- Probing surface Cu Pads
- Lifetime > 1 million TDs

Summary / Conclusion

- Developed an innovative interchangeable MEMS Probe Card architecture that meets Intel's demanding parametric test requirements
- Probe design with desired CRES, contact force and scrub length achieved across different pad surfaces
- MEMS probe fabrication, assembly and capability developed for varying pad sizes, layouts and pitches
- Exceptional CRES and lifetime performance demonstrated
- Future parametric test requirements
 - High temp (180 200°C) testing
 - Fine pitch probing <40 μm up to 20 μm
 - Smaller pad size ~ 20x20 μm

Acknowledgements

FormFactor Team

 Jose Gonzalez, Oscar Moreno, Chintan Panchal, Nick Jansen, Xianling Yan, Wilson Kyi, Sudhin Shetty, Jesse Li, Tim Eichenseer, Arvind Sambasivan

Intel Team

- Jiun-hong Lai, Tanzila Tasmin Ava