

Enabling 100+ GHz Launches for 448G Signals

M. Hameem Ur Rahman/ Quaid Joher Furniturewala R&D Altanova/Advantest

Agenda

- Exponential bandwidth progression
- 448G transmission
- 448G PCB launch challenges
- Through loss, reflected loss, phase and cross talk at higher frequencies
- Super structure: Special Probe via structure (IP)
- Test Vehicle
- Simulations
- Measured results / correlation
- Conclusion

Exponential Bandwidth Growth

- ✓ Exponential growth in data transfer is seen in the last two decades
- √ 448G era for highspeed signal transfer is inevitable

NVLINK Bandwidth Progression

NVLINK Progression over time

PCI-Express Bandwidth Progression

PCI-Express Progression over time

448G Transmission is a Challenge

Image Ref: R&D Altanova/ Advantest

448G data transmission through a traditionally designed PCB is extremely challenging

^{*} Near Package Optics/ Near Package Copper are technologies comparable to PCB launches since they launch into the printed circuit boards

HPC Challenges

Impedance Control Back-Drills Drill Accuracy Material Registration **Plating Feature Control**

Materials

Density

S

ш

ט Z

CHALLE

PCB Challenges

What are the current challenges for performance

- Skin loss vs dielectric loss (dielectric loss gets smaller with frequency)
- Impedance Control
 - Material properties and how to reduce impedance discontinuities
 - Via tuning and via structures special structures to reduce losses

Skin loss vs dielectric loss

Skin loss dominates more vs dielectric loss

- Trace width= 4.25mils
- Length 1inch
- Minor change in IL from Df=0.0016 to 0.009

 Surface roughness contributing directly to skin effect

S-Parameters [Magnitude]

Impedance Control: Material properties

Material properties to consider and how to reduce impedance discontinuities

Material selection

- Glass Fiber vs. Resin
 - Ex: what is 1078 [73%]
 - Tighter weaves; yields better SI performance
- Panel Rotation to mitigate Fiber Weave Effect
 - Helps reduce impedance discontinuities and propagation delays on a differential line
- Tighter impedance control required!

Surface Roughness

- RTF vs VLP/HVLP at higher frequencies
- Using surface roughness parameters in simulations

106 weave

2116 weave

Rotation

	RTF2	RTF4*	HVLP	HVLP2	HVLP3	HVLP4	HVLP5*
	73137300 FL	F Nova Processed 1866 Albert			SECTION STATES STATES		S Exponents and
Thickness (oz)	H / 1 / 2	H/1/2	H / 1 / 2	H/1/2	H / 1	H / 1	H/1
Roughness, Sa (μm)	0.3	TBD	0.22	0.15	0.10	0.09	0.07

Impedance Control: Via tuning and via structures

- More tuning return via -> Structure goes closer to Coax via structure
 - True Coax vias are great due to less complex C-L-C structure
 - Challenge is layout and manufacturing

Minimizing structure size by half would approximately double the bandwidth

Coaxial via tuning						
ID (d) [mil]	OD (D) [mil]	Dk	Z0 (Ohms)	Cut-off (GHz)		
4	19	3.5	49.91	174.62		
5	23.5	3.5	49.57	140.92		
7.9	38	3.5	50.31	87.50		
9.8	47	3.5	50.22	70.71		

$$c \approx 300'000 \, \text{km/s} \qquad \boxed{ f_c \approx \frac{2 \times c}{(D+d) \times \pi \times \sqrt{\epsilon_r}} }$$

^{*} Data taken from Test ConX 2025 for reference

Factors Affecting Data Transmission

Insertion loss, return loss, cross talk and phase mismatch can all contribute to poor performance of the link

Insertion loss: aka transmission loss – Is a loss observed on transmitted energy

Return loss: aka reflection loss - measurements of reflected energy back into the transmission port

Phase Mismatch: Mismatch observed between phase of P/N signal of a differential output port compared with Input phase

Cross talk: Energy coupled between two links due to improper isolation between the links

Managing these factors becomes significantly challenging at frequencies beyond 50GHz

Super Structure: Special probe via IP

- Tight impedance controlled vias

- Modeled with a Full 3D solver [CST Microwave Studios]
 - Focused on the via-tuning
 - Copper roughness accounted

- Ensures tight impedance control
 on the stripline
- Provides necessary isolation to address cross-talk at 100GHz+ Nyquist
- Remedies the biggest challenge for higher frequency launches – via tuning

Test Vehicle Design

Measurement Structures

Connector → microstrip → "super structure" → stripline → "super structure" → microstrip → connector

- Test vehicle designed for Probe application
- Multiple structures per routing layer
 - Varied via-impedance
 - Varied line-widths [21um, 48um, 203um]
 - Varied impedances (48, 50, 52 Ohms)
 - Varied line-length [1-inch, 2-inches]
- Repeatability: Tested 2x boards

np	Lyr	Copper Weight (Gr)	Family	Image	Foil	Thk (µm	Туре	Plt	Er
	SMT					25.4			
lxΩ	L1, TOP	1.98446	Substrate Foil		0.07oz	15.0114	Mixed	0	0.00
			GL102	3	3724	26.2446			2.47
	L2, RDL1	1.98446	Substrate Foil		0.07oz	15.0114	Mixed	0	0.00
			GL102			26.2446			2.47
	L3, RDL2	1.98446	Substrate Foil		0.07oz	15.0114	Mixed	0	0.00
			GL102	20-1	01 00 Cart	26.2446			2.47
3χΩ	L4, RDL3	1.98446	Substrate Foil		0.07oz	15.0114	Mixed	0	0.00
1	1 1	11	GL102			26.2446			2.47
	L5, RDL4	1.98446	Substrate Foil		0.07oz	15.0114	Mixed	0	0.00
	ACCES OF THE SECOND	A 44 44 AVV.	GL102		Name de la co	17.1846		20.00	2.47
	L6, INR1 L7, INR2	1.41748 1.41748	E705G		0.05oz 0.05oz	109.982	Mixed Mixed	29. 29.	4.20
			GL102			17.1846			2.47
	L8, RDL5	1.98446	Substrate Foil		0.07oz	15.0114	Mixed	0	0.00
			GL102		- 1000	26.2446			2.47
Ω	L9, RDL6	1.98446	Substrate Foil		0.07oz	15.0114	Mixed	0	0.00
			GL102			26.2446			2.47
	L10, RDL7	1.98446	Substrate Foil		0.07oz	15.0114	Mixed	0	0.00
			GL102		9,000,000	26.2446			2.47
	L11, RDL8	1.98446	Substrate Foil		0.07oz	15.0114	Mixed	0	0.00
			GL102			26.2446			2.47
Ω	L12, BOTTOM	1.98446	Substrate Foil		0.07oz	15.0114	Mixed	0	0.00
	SMB			(i) -	54 (000) 5	25.4			

Validation Setup

- Anritsu 70GHz VNA with 130GHz frequency extender
- Calibrated up to 1.00mm VNA cables [rated up to 100GHz]
- Connector P/N: 01K80A-40ML5 [1.00mm]
- Test Vehicle Board

Measurement vs Simulation Results

Insertion loss & Return loss plots

- Measurements include RPC-1.00mm connectors
- Insertion loss is linear up to 110GHz
- Return loss looks good up to 110GHz
- Simulation and measurement shows good correlation

Additional Measurements

TDR, Insertion loss & Return loss plots

- Measurements include RPC-1.00mm connectors
- Trace impedance ~40Ohms +/- 2ohms
- Overall impedance drift from 500hm target produces decent performance
- Variation in trace impedance profile should be minimized to < +/-5%

Conclusion

- PCB technology should be able to handle 100GHz+ launches with the application of right technology
- Selecting low loss material is not enough
- Working with FAB houses is essential to dial down control and optimize per the factors discussed
- Standardizing Stack-ups will help with repeatability
- Via-tuning is the most critical parameter to achieve good performance, at higher frequencies
- "Super structure" or alike via optimization/controls essential to enable 448G+ data rates

Questions?