

HPC & Al Probing Devices Require New Integration Schemes

Ksenija Varga

Business Development Manager

Alois Malzer, Tobias Zenger, Peter Urban, Thomas Uhrmann

SW TEST | INTRODUCTION & MOTIVATION

TECHNOLOGY TRENDS

 2.5D interposer, 3D stacking, hybrid bonding and CPO suppose increased I/O counts, decreased I/O pitch and I/O density increase at the package level

CHALLENGES

- WARPAGE due to complex heterogeneous integration and chip stacking.
- CTE mismatch: stress can affect the chiplet operation

INCREASING DEMAND

- Test intensity, test complexity and probe card demand increases
- Advanced packaging one of the main drivers for the probe cards market

SECURITY & IP PROTECTION

- Highly confidential designs.
- Traceability efforts can be tackled with Die Annotation Feature

*REF: Yole, SWTest2024

SW TEST | INTRODUCTION & MOTIVATION

Al Processor Driving Chiplet Technology

	NVIDIA A100	AMD MI300	AWS Trainium2	NVIDIA Blackwell Ultra
Announcement	2020	2022	2023	2025
Memory	80 GB	80 GB	96 GB	288 GB
Architecture	Monolithic GPU + HBM	4X Chiplet GPU + HBM	4X Chiplet GPU + 12 HBM	4X Chiplet GPU +12 HBM
Packaging	inFO	CoWoS®-S	CoWoS®-R	CoWoS®-L
GPU Die Size	32.3×25.78mm	4X 28.7×12.8mm	4X 32×21mm	4X 40×28mm
	1X reticle size	4.5X reticle size	5.5X reticle size	9.5X reticles size

SW TEST | DIGITAL PATTERNING of FINE PITCH RDLs

NO LIMITS for DIGITAL PATTERNING

WAFER LEVEL

COMPLEX PACKAGE LEVEL

SW TEST | DIGITAL PATTERNING of FINE PITCH RDLs

Comparison BEOL i-Stepper Technology

- →For patterning of Large Dies: 160 stepper shots.
- →Nikon stepper: 76 shots / 300mm wafers (200 wph).
- →Throughput significantly decreases vs. nominal stepper throughput.

System [wph]	Package 120×150mm 9.5X reticles
i–line Stepper	30 – 100
Maskless exposure Next Generation LITHOSCALE® XT	Constant throughput

SW TEST | ALIGNMENT - 4 MARKS - STANDARD

SW TEST | ALIGNMENT – 16 MARKS - DIE SHIFT APPLICATION

SW TEST | ADVANCED PACKAGING WLP vs. PLP

Transition from Round to Square Substrates: Higher Utilization

16 PACKAGES on WAFER 300mm wafer

25 PACKAGES ON PANEL 300mm square

SW TEST | ADVANCED PACKAGING WLP vs. PLP

CD Uniformity at 10 µm L/S

- CDU contour plot of the critical dimension distribution evaluated as vertical line distance in writing orientation.
- Sampling was performed in a l→r, t→b raster scan fashion. No vertical striping is visible in the scan direction.

PI High Resolution Test Matrix

 CDU– contour plot of the critical dimension of the 300 by 300 mm² panel evaluated via as above

 Design layout is repeated with a period of 11mm in all four directions: dense VIA, isolated VIA, L/S patterns.

*REF.: ECTC2025

SW TEST | ZERO STITCH & SIEMENS STARS

High Resolution PI Patterned with active "ZERO STITCH" Software Feature

- Stitching markers are activated on the left and right of the stitching line (superimposed line and row of triangles).
- "Stitching line" is demarked by yellow arrows.

SILICON WAFERS

SIEMENS STAR Patterning

*REF: ECTC2025

SW TEST | 2.5D & 3D INTEGRATION NEW TECHNOLOGY

NEW CARRIER SOLUTION

- Enable temporary bonding on Si wafers
- High temperature stability >700 °C
- Precise control of debonding plane with laser energy
- Lower total thickness variation (TTV) then PoR temporary bonding solution.
- Carrier re–usability and cleaning options

REQUIREMENTS SET for LAYERRELEASE™ on Si carrier

- Low TTV: <100 nm
- High temperature stability 700 °C
- Optimized interaction wit IR Laser: high IR absorption
- Shielding of product wafer

SUSTAINABILITY – eco friendly cleanability of LRL residuals

SW TEST | 2.5D & 3D INTEGRATION

PROCESS FLOW

- $\rightarrow PVD$ \rightarrow CVD
- →Fusion
- →Adhesive bonding

- →Thinning
- →Hybrid bonding
- →Overmold

- →Pre- alignment
- →Exposure
- \rightarrow Lift off

- →Wet Clean
- \rightarrow CMP
- →Dry Etching

*REF: ECTC2025

Public

SW TEST | CONCLUSIONS & OUTLOOK

Fine Pitch Probe Cards for HPC / Al Devices

- High pitch, high density RDL processing efficiency.
- Data driven patterning has no limits in large die size patterning.
- Warpage management.

EVG's LITHOSCALE®

- Supports rapid R&D prototyping, faster tape—out and faster response to the customer changes.
- CoO improvement vs. mask based technologies

2.5D/3D integration processes

- RDL First / CHIP LAST approach in probe manufacturing.
- The industry established TB/DB technology can be replaces by novel IR laser layer release processes.

EVG®880 IR Laser LayerRelease™

- Lower TTV, High Temperature processes, Si carrier
- Compatibility with FEOL processes
- Sustainability in the semiconductor supply chain.

SW TEST | LITHOSCALE® XT New Product Launch

High Throughput, High Resolution <2 µm L/S Digital Lithography System

- Wafers up to 300, panels 300×300mm square
- Dual stage concept, six exposure heads
- Parallel data processing and writing.
- Topside, visible light, reflective IR alignment.

GLASS WAFERS
TOP TILTED VIEW
patterned with BLACK RESIST

Thanks for your Attention!

Contact the EVG Team with any questions ...

Dr. Ksenija Varga Business Development Manager

E: k.varga@evgroup.com