

Athena PCA

A new generation Probe Card Analyzer for large area and high load devices

Ligi Milazzo ¹, FedericoTresoldi ¹, Federico Mariani ¹, Antonio Rinaldi ¹, Gabriel Gedler ², Davide Appello ¹

(2) intel

Agenda

- 1. Motivations to develop a new probe card metrology tool
- 2. Athena PCA project goals
- 3. Probe card analysis: Test objectives review
- 4. Architectural details and results
- 5. Status and next steps
- 6. Conclusions

Memories

NON-Memories

1.1 Probe cards Vs legacy PCA performances

Leading edge performances probe cards

Legacy PCA support space

DRAM

NVM/other

HBM

Advanced Logic

MEMS

Power

RF

CMOS Image

Sensor

Photonics

Accuracy

1.2 What was said at SWT 2017

Voice of Customer Trips (VoC) • What do you want in next generation Probe Card Analyzer (PCA)? - Asked about Probe Card Roadmaps • Array Size • Probe Pitch • Overtravel Force • ... - Probe Card Analyzer (PCA) test requirements • Accuracy – Repeatability • Flexibility – Voltages, States • New Requirements • ... SW Test Workshop | June 4-7,2017

- Recognised a growing performances gap between existing PCA and new PC certification needs
- Identified key parameters
 - Array size
 - Pitch
 - Force
 - Channel count
- Highlighted higher level requirements
 - Accuracy
 - Repeatability
- Reproducibility has been included among requirements

2.1 Athena PCA project goals

2.2 Athena PCA project goals

- Designed consider long-term roadmap PC requirements
- Considering multiple usage models
 - Probe card manufacturers
 - IDM and OSATs
- Satisfying
 - High volume / high throughput needs
 - Debugging / engineering
- Enabling re-use of legacy investments on motherboards

3. Test objectives review

Test	Domain		Unique to ATHENA	manufacturers		End users		
PCB test		E	Test		Х		-	
XY probe position		0	Test		Х		X	
Z probe position							X	
Board components che Cap leakage, passive component	Capabilities unique to Athena PCA Vs Legacy					-		
Path resistance	Z probe position (optical)					X		
Array force (vertical)						-		
Array force (lateral)	Array force (vertical)					-		
Probe lateral movemen	Array force (lateral)					X		
Activation, run-in & cle						-		
Connection check	AOT/POT					X		
OverTravel test	Loophack through independent flying probac					X		
AOT/POT	Loopback through independent flying probes					X		
Loopback through inde	3D probe tips analysis					X		
3D probe tips analysis		J	เธอเ	^	^		X	
Multi-array probe card test		E/M/O	Test		X		X	
Probe Head only test		O/M	Test		X		-	
Debug		E/M/O	Test		X		X	

4. Architectural Details & Results

General Features

PC with embedded RF pins

Motion system based on high planarity granite

4.1 Architectural Details & Results

Experimental Results: Data Sources

Utilization by tool type

Mother boards	Channel count	Number of cards tested
93K	9218	Multiple units
Custom ATE 1	2304	x100
Custom ATE 2	9218	x100
MB from legacy equipment	Up to 9218	Multiple units

			Probe cards examples			
Probe card	Pin count	Array size	Force			
PC-A	51K	51700x47000	144kg			
PC-B	160K	43500x65000	280kg			
PC-C	40K	FWA 12"	100kg			

4.1 Architectural Details & Results Data from Experimental Results

Tested performances

Test name	Methodology Range		Repeatability Accuracy		Run rate	
Optical alignment in XY by 3D inspection	White Light interferometer	300 x300 mm ²	sigma = 0.2um	0.5um/300mm	2.6	sec/mm²
Optical planarity	White Light interferometer	0.30 mm	sigma = 0.15um	<0.4 um/1mm		
Electrical planarity (loaded):probe height		300 x300 mm ²	sigma <0.35 um	0.5um/1mm	Up to 1	Sec/Z step
Electrical planarity (loaded):array tilt	By loading the array with a conductive plate	300 x300 mm ²	sigma < 10urad	<60urad	As above	
Cres		0-200ohm	sigma=0.15 ohm	< 0.2% Full range	0.026	sec/channel

Probe Card PC-A

	Repeata	bility	Acquisition Time			
Meas ID	Athena	Legacy	Athena	Legacy		
Optical Alignment @WLI	X sigma = 0.17 um Y sigma = 0.17 um Z sigma = 0.08 um	X s= 0.66 um Y s= 0.32 um Z s= n.a.	90 min	240 min		
Loaded Electrical Planarity @Plate	Z sigma = 0.34 um	Z s = 0.827 um	down to 5 min	10 min		
Cres @Plate	Cres sigma = 0.1 ohm	Cres s = 0.26	90 sec	n.a.		

4.2 Architectural Details & Results

Exchangeable / swappable motherboards and planarity compensation

- Motherboards are replaceable
 - Semi-automated tools available

- Motherboard planarity compensation
 - Easy usage of motherboard compensating marginalities
 - Reducing impact of calibration time

4.3 Architectural Details & Results 3D Morphology analysis with interferometer

- Higher resolution and accuracy on Z evaluation
 - Up to 40 nm resolution
- Morphology evaluation of probe with features
- Accurate pointed probe diameter measurement
- WLI specifications
 - FOV 890x830 um
 - 1024 X 1102 Pixel
 - 0.81 um lateral resolution
 - max MTF 0.3 lp/pxl

4.3 Architectural Details & Results High pin count/ density PC: morphology analysis

PC-A - Results from 10 repetitive measurements

Mean Sigma 165,94nm Mean Sigma 147,4nm Mean Sigma 68,88nm Mean Sigma 169,53nm

Mean Sigma 152,66nm

4.4 Architectural Details & Results

Unloaded Planarity & LB Measurement: high speed/resolution posts

- The archictecture supports two fully independent posts
 - Up to 1um repeatability in Z planarity detection
 - Minimum pitch capability of the tool: 25um
 - Minimum pitch with 40um diameter tips: 50um
- Fast motors
 - Up to 10 probe/sec/post
- A load cell is integrated for spring force evaluation
 - Up to 10gr

4.4 Architectural Details & Results High speed/resolution posts: loopbacks test

Multiple loopback variants:

- Direct, capacitive or with custom circuit (including switches and/or active)
- Different levels/layers of the probe card where the LB is realized
 - On RFST or MCP on plate (direct and capacitive)
 - On the MLO or PCB for capacitive / custom

4.4 Architectural Details & Results High speed/resolution posts: loopbacks test

4.5 Architectural Details & Results

Debugging features

- Re-use of legacy motherboard design
- Automated MB transition from the metrology module to the debug module
- The probe card loads manually while the motherboard is in "live bug" status
- Automation support motherboard rotation to "dead bug" orientation
 - The motorized microscope moves on the array to inspect.

Media plate exchanger module

Base machine: Metrology module

Optional module debug station

4.5 Architectural Details & Results

Debugging features

- Re-use of legacy motherboard design
- Automated MB transition from the metrology module to the debug module
- The probe card loads manually while the motherboard is in "live bug" status
- Automation support motherboard rotation to "dead bug" orientation
 - The motorized microscope moves on the array to inspect.

4.5 Architectural Details & Results

Debugging features: navigation automation

spot reached automatically by microscope

GUI Snapshots

Recipe Pros. RUAMA, All. Tes

34th SWTest

5. Athena PCA Status and Next Steps

- Two versions/options available
 - Autoloader
 - Debug station
- Fully engineered by Technoprobe
- Customization ability
- Install base
 - Five systems deployed at customer sites
 - Five systems in use in the Technoprobe shop floor, planned 20+
 - Three system available for engineering developments
- Lead time and capacity
 - Production CT is currently of 6Mo
 - Scalable operations setup, with short supply chain

- Certifications Received by the Equipment
 - **NFPA79**
 - Semi S2
 - Semi S8
 - CE
 - Including EMC/EMI specific checks
- Shop floor integration
 - SECS/GEM supported
- Next steps
 - Continously enhancing the engineering features
 - Evaluating customization requests
 - Voice of customers feedback

6. Conclusions

- Advanced logic and memory chip demands
 - Finer pitch interconnect probing
 - Higher pin count
 - Higher loading force
- Since few years, legacy PCA performances are falling behind probe card demand for comprehensive certification
- Athena PCA aims supporting the PC roadmap in the long term
 - Enable complex test objectives, like
 - Force analysis (vertical and lateral), loopbacks test with flying posts, POT/AOT
 - Fit with multiple use model and cost constraints
 - End-of-production line certification
 - High throughput operations for HVM
 - Engineering and debugging
 - Reuse of legacy MB

We are available to demonstrate the tool using your probe card!

Thank You!

Athena PCA with Autoloader

