

High-Voltage Test: Deflection study for LuPo pressure chamber probe cards

Technical Innovation - Physical Solutions

Diana Damian

T.I.P.S. Messtechnik GmbH

Overview

Deflection effects

System behavior

Background

The challenge

Results

Conclusion

The basics

Introduction to HV Test

Follow-On Work

Introduction - HV test

- High voltage test: involves applying a higher voltage than the device's intended working voltage to check for insulation resistance and leakage current.
- How we do it?

- max temperature
- ' max voltage

The basics

Paschen's Law

Breakdown voltage between two electrodes in a gas is a function of gap distance and pressure.

Paschen curve for air

Background

Technology transition

Silicon → Silicon Carbide

- higher breakdown voltages
- lower on-resistance
- exceptional thermal stability

Power capability vs switching frequency for popular high-voltage, high-current transistors and other device (https://www.powerelectronicsnews.com/the-difference-between-gan-and-sic-transistors/)

The challenge

 Example: The chip-scale pressure chamber allows for testing under extreme conditions: up to 180° C, 15kV, 1500A **Increased** deflection

More pressure needed

Increased chance of arching

Higher test voltage & temperature

Smaller devices

• SiC chips have the ability to withstand high voltages, up to ten times higher than those usable with silicon.

Background

Deflection effects

- Bad CRES
- Needle tip fast wear out or burn
- Sudden overtravel

Probe card crashing the wafer – stepping
over the wafer edge

System behavior - deflection

• What is deflection?

The amount of deformation that occurs in a structural element when it is subjected to a load

- What influences Deflection?
 - Applied force
 - Length of span between supports (clamping)
 - Modulus of elasticity and moment of inertia

$$\delta_{max} = rac{FL^3}{48EI}$$
 | I = width × height 3 / 12

Deflection study - test setup

- TIPS HV probe card
 - 1,6mm PCB thickness
 - FR4 stiffener
- Big/small LuPo
- Low and high input pressure
- Clamping on PCB standard clamping on Accretech prober

Deflection study - results

Deflection study - results

Deflection Study

Probe card geometry influence

$$\delta_{max} = rac{FL^3}{48EI}/$$
 C

Pressure input	Delta_z_ST1	Force_ST1	С	Mean	
bar	μm	N	μm/N		
2	23	130,847334	0,04347826		
3	40	153,93804	0,025	0.00	
4	52	192,42255	0,01923077	0,03	
5	65	221,285933	0,01538462		
	Delta_z_ST2	Force_ST2			
2	100	123,150432	0,01		
3	120	144,316913	0,00833333	0.04	
4	133	180,877197	0,0075188	0,01	
5	145	192,42255	0,00689655		

Summary

Key factors:

- mounting method
- input pressure levels
- probe card geometry → the thicker the probe card, the smaller the deflection
- overall system deflection

Best practices:

- Correct Z-zero determination or overdrive setting
- Pressure monitoring
- Robust probe card design

Best practices

Ideal set-up prober sequence where correct OVT is determined:

- Overall system deflection
 - # of probes contribute to deflection as well
 - differences between cantilever and vertical
 - Force per probe
 - Probe count

Forecast vertical						
Lupo pressure	e* Needle quan	tity Overall force	Overall deflection***			
bar	-	N	μm			
3	3000	450	48			
0	3000	300	32			
3	1000	250,00	26			
0	1000	100	11			

^{*} Set to zero if LuPo is already ON before first needle conatct

^{***} To be considered from first needle contact (one single needle)

Conclusion

High voltage testing of SiC chips needs an update!

Old

prober - probe card setups

- Probe card deflection generally present, but not considered in OD calculation
- Human intervention needed

New

prober - probe card setups

- Automated factories
- Multi-site testing / SiC testing

Rigid system

- No human intervention
- More complex design → expensive, but more efficient and reliable!

Follow-On Work

- Work on concepts for more rigid probe cards while keeping same test system structures
- Update probe card design rules to meet the new technology standards and the requests that come along

Thank you!