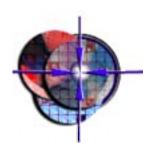


Automatic Probe Mark Inspection

Dai Dee Casavant Electroglas, Inc.


Problem statement

Electrical test shows good die but passivation has been broken

Poor yield due to:

- probe card error
- prober error
- setup error

What is PMI?

- Visual inspection of probe marks
- Passivation— make sure
 marks do not touch the glass

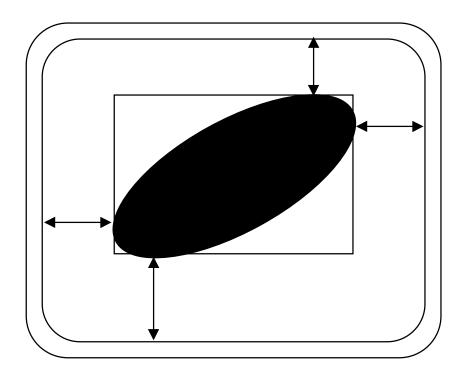
Why is PMI necessary?

- Older probers are not accurate enough for new technologies
- Manual PTPA (Probe To Pad Alignment) is not optimal (operator setup issue)
- Probe cards
 - quality
 - over use

Typical PMI process

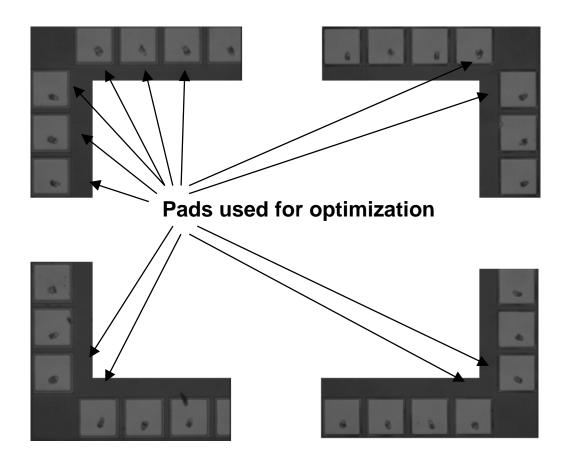
- Operator stops auto-probe to inspect first touch down
 - Verify Probe to Pad Alignment quality
- Prober pauses on every nth wafer for manual probe mark inspection
- After probing, an offline inspection station inspects probe marks

- Advanced Probe Mark Inspection
- Fully automatic
- Standard vision algorithm for inspection
- PMI checks
 - drift
 - mark size
 - proximity to edge

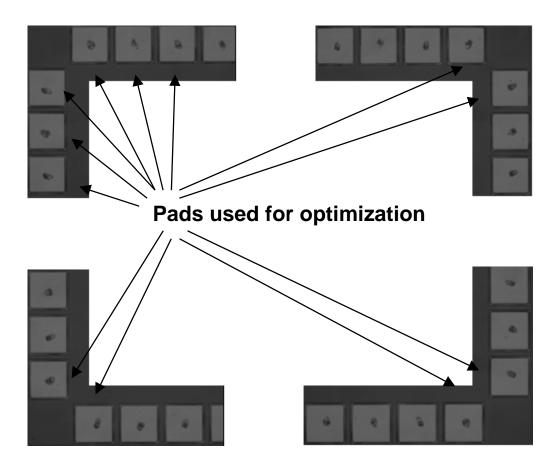

Benefits

- eliminates operator intervention
- optimizes probe to pad alignment
- post probe process control

Probe to Pad Optimization (PTPO)



Based on distances from mark boundaries to pad boundaries, we optimize mark placement by maximizing the minimum


Example of marks pre PTPO

Example of marks post PTPO

PTPO continued...

- True close loop feedback
- Process monitor
- Eliminate operator subjectivity

Sample recipes: #1

'APTPA

load

profile

AA

probe

PMI on 4 pads on every 50th TD (Touch Down) of every 5th wafer'

Checks for drift

Time added: negligible

Sample recipes: # 2

'APTPA

Load

Profile

AA

Probe

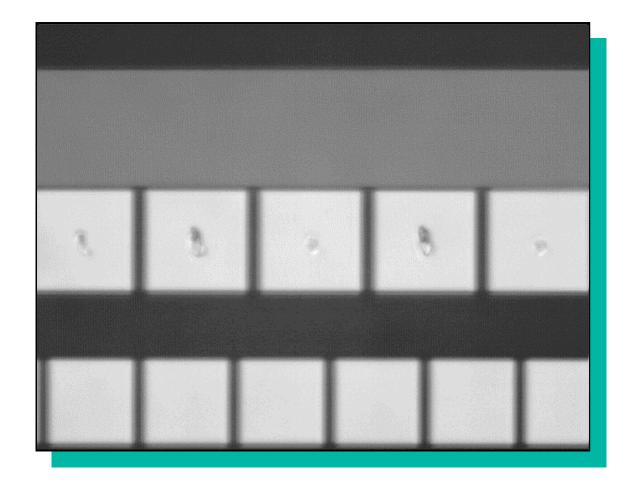
Unload

PTPO on first TD of all other wafers

PMI on 4 pads on every 50th TD of all other wafers'

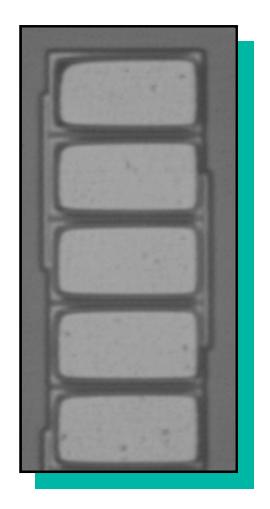
'Close loop' process control Checks for drifts Time added = 24 minutes

Post probe process control


- Dedicated prober for PMI
- Integrate into the Inspection station
- Collect probe mark data to check:
 - die to die stepping error
 - wafer to wafer alignment error
 - setup to setup variation
 - probe card wear characteristic
 - frequency to clean and repair probe card

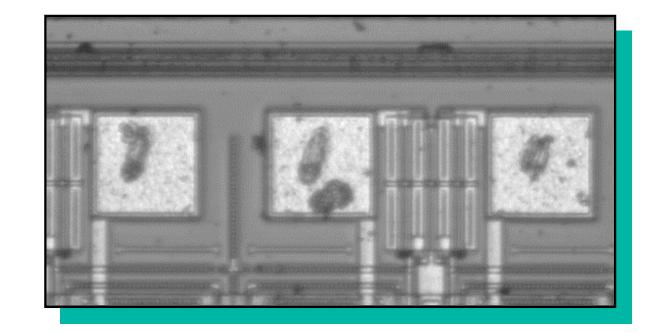
Challenges

Bright marks



More challenges

Background variation due to wafer process



More challenges

Dirt on pads

More challenges

- New probe card technologies
 - membrane
 - vertical probe

• C4 technologies (Flip Chip)

Summary

• PTPO provides

- close loop control
- data can be used for process monitoring

• PMI options

- inspects every nth die on every nth wafer
- min/max mark size
- max # of fails per wafer
- consecutive fail limit
- evaluate drift
- guard band adjustment

Summary

- Current PMI provides user maximum flexibility
- Minimizes operator intervention
- In-line process verification
- Probe card validation
- Minimal throughput hit
- Post probe checking

