Probe Needle Wear and Contact Resistance

Jerry J. Broz, Ph.D.

Research and Development Advanced Probing Systems, Inc. Boulder, Colorado

Reynaldo M. Rincon

Probe Coordinator Texas Instruments, Inc. Dallas, Texas

SEMA	TECH

Advanced Probing Systems, Inc.

SWTW '98

Applied Precision, Inc. Sandia National Labs

Participants

SEMATECH

Probes PTAB ____

Probe Needles

Advanced Probing Systems, Inc. —

Probe Cards

- CerProbe Corporation
- JEM America _
- Micro-Probe, Inc.
- Probe Technology Corporation
- Wentworth Laboratories ____

Testing Facilities

- Applied Precision, Inc. (John Strom, Kenneth Sokol, Bryce Ekstrom)
- Sandia National Laboratories (David Monroe, Scot Swanson)

SEMATECH	Applied Precision, Inc.
Advanced Probing Systems, Inc.	Sandia National Labs
	2

Research Objectives

• No Benchmarking

- Probe card construction was specified for this study
- Overall performance between cards <u>WAS NOT</u> compared

• Quantify abrasive cleaning effects

- Probe tip wear due to burnishing
- Appropriate cleaning procedures

• Evaluate probe needle wear behavior

- Room and elevated temperature touchdown testing
- Appropriate probe needle metal system

Research Focus

• SEMATECH 1997 Development Roadmap

- Room temperature (hot chuck at $30^{\circ}C$)
- Elevated temperature (*hot chuck at 85°C*)

• "Practice" for probe card cleaning

- $3-\mu m$ grit burnishing pad (*hot chuck at 30°C*)

• "Practices" used for 70 µm pitch probe cards

- Tungsten and tungsten-rhenium probe materials
- 0.005" and 0.007" diameter probe needles
- Three-tiered epoxy ring probe cards
- For this presentation only Tier 1 behavior will be discussed

Probe Needles

• Testing Environments

- Abrasive cleaning
- Room temperature(30°C)
- High temperature (85°C)
- "Low" forcing current (50 mA)

• Focus on "Primary" Probe Needle Properties

- Material
- Probe and probe tip diameter
- Etch length

		1
SEMATECH		Applied Precision, Inc.
Advanced Probing Systems, Inc.	90' \\/T\\/	Sandia National Labs
	300100 30	5

Probe Card

• Consistent "Secondary" Probe Needle Variables

- Balanced contact force
- Overtravel
- Beam angle
- Tip angle
- Etc....

SEMATECH		Applied Precision, Inc.
Advanced Probing Systems, Inc.	S(V)	Sandia National Labs
	500100 90	6

Probe Needle Specifications

● Isolinear[™] Probe Needles

- Known probe tip geometry
- Tip diameter and length mathematically related

Probe	Etch Length	Etch "Rate"	Finish
Needle	(inch)	(deg)	
5-mil	0.070	4.1	Tungsten (W)· Matte
Diameter	0.080	3.6	Tungsten-Rhenium (WRe). Polish
	0.090	3.2	rungsten Knemun (WKC). ronsn
7-mil	0.090	4.5	Tungsten (W): Matte
Diameter	0.100	4.0	Tungsten-Rhenium (WRe): Polish
	0.110	3.6	

n, Inc.
Labs
,

Probe Card Specifications

Board Style:	HP 4062, 4" PCB	Probe Depth:	150 mils
Test Temperature:	25° to 85°C	Ring Material:	Ceramic
Tip Diameter:	1.2 ± 0.1 mils	Overdrive:	3 mils
Tip Shape:	Flat	Planarity:	± 0.5 mils
Tip Angle: .	$103 \pm 3 \deg$.	Alignment:	± 0.5 mils
Beam Angle:	10 deg.	Leakage:	100 nA
Pad Material:	Aluminum	Contact Resistance	1.5 to 2.0 Ω
Fanout:	0 ± 3 deg.	Gram Force:	2 grams/mil
		BCF:	$\pm 20\%$

	Applied Precision, Inc.
90' 1/1/T/A/	Sandia National Labs
500100 90	8
	SWTW '98

60-Pin Configuration

X - Location (µm)

Probe Card

SEMATECH		Applied Precision, Inc.
Advanced Probing Systems, Inc.	SIV/TIV/ (08	Sandia National Labs
	500100 30	10

Test Wafers

• Abrasive Testing

- 6-inch "scrap" metallized wafer
- 3-µm abrasive pad , i.e. "the pink stuff"

• Touchdown Testing

- 8-inch metallized wafer manufactured by SEMATECH
- Titanium-nitride substrate
- 1- μ m thick Aluminum layer

ſ		1
SEMATECH		Applied Precision, Inc.
Advanced Probing Systems, Inc.	$S(\Lambda) = (\Lambda) = (\Lambda) = (\Lambda)$	Sandia National Labs
	500100 30	11

Stepping Pattern

SEMATECH Advanced Probing Systems, Inc.

SWTW '98

Applied Precision, Inc. Sandia National Labs

12

Test Equipment

• ElectroGlas-4080 Tester with "Hot Chuck"

- Burnishing pad touchdown testing
- Metallized wafer touchdown testing at 30°C and 85°C

• HP4062 Parametric 48-Channel Analyzer

- On-line contact resistance measurements

• Applied Precision PRVX₂ -Probe Card Analyzer

- Probe tip diameter
- Contact resistance
- Balanced contact force

		1
SEMATECH		Applied Precision, Inc.
Advanced Probing Systems, Inc.		Sandia National Labs
	000100 30	13

Touchdown "Test Flow"

• 3-µm Abrasive Pad

- 3.0-mil overtravel, linear mode, double-touchdown mode
- PRVX₂ metrology performed after 0, 7.5K, and 15K touchdowns
 - Contact resistance
 - Tip diameter

• Metallized Wafer at 30° and 85°C

- 3.0 mil overdrive, double-touchdown mode (8 touchdowns/second)
- Contact resistance measurements every 5K touchdowns
- $PRVX_2$ metrology performed after 0, 250K, and 500K touchdowns
 - Contact resistance
 - Tip diameter

3-µm Abrasive Pad

SEMATECH		Applied Precision, Inc.
Advanced Probing Systems, Inc.	SIVITIVI (08	Sandia National Labs
		15
	-	

3-µm Abrasive Pad

• Tungsten vs. Tungsten-Rhenium

- Abrasive particles are considerably harder than both probe materials
- No "significant" differences between materials in amount of tip length removed

• 5-mil vs. 7-mil Diameter Probe Needles

 Amount of tip length removed from the 5-mil probes was greater than that of the 7-mil probes

• Contact Resistance Measurements

SEM Adva

- Baseline ("as delivered") and post-touchdown C_{RES} values were higher than expected
- Cleaning was performed and C_{RES} values were considerably reduced
- Contamination on probe tip surface tungsten-oxide? other residue?

	1
	Applied Precision, Inc.
$S(\Lambda) = (\Lambda) = (\Lambda) = (\Lambda)$	Sandia National Labs
500100 30	16
	SWTW '98

3-µm Abrasive Pad

• "Approximate" Wear Rates

- Changes in tip geometry occur with each touchdown
- Wear rate = f(overtravel, scrub length, BCF, etch length, contact materials)
- Conservative "first approximation" of abrasive wear rates

	"Estimated" amount of material removed 0 to 7.5K	"Estimated" amount of material removed 0 to 15K
5-mil diameter	38 Å per touchdown	52 Å per touchdown
7-mil diameter	35 Å per touchdown	48 Å per touchdown

SEMATECH		Applied Prec	ision, Inc.
Advanced Probing Systems, Inc.	S(V)	Sandia Natio	nal Labs
			17

Al-Wafer at 30° and 85°C

• Probe Tip Wear Characteristics

– IsolinearTM taper shape was used to calculate <u>average</u> tip length changes

• Contact Resistance

– Box plots were used to show the range and mean of C_{RES} values for material

SEMATECH		Applied Precision, Inc.
Advanced Probing Systems, Inc.	$S(\Lambda) = (\Lambda) = (\Lambda)$	Sandia National Labs
	500100 30	18

Tier 1 Contact Resistance on Wafer (3-mil overtravel at 30°C)

Tier 1 Contact Resistance on Wafer (3-mil overtravel at 30°C)

Al-Wafer at 30°C

• Wear and C_{RES}

- 7-mil WRe-probes demonstrated significantly lower C_{RES} values than 7mil W-probes
- Differences between the 5-mil probes were not as significant
- Microhardness values of the probes

	W005	WRe005	W007	WRe007
VHN (kg/mm ²)	738 ± 47	736 ± 33	718 ± 45	804 ± 23

• C_{RES} on "Virgin" vs. "Scrubbed" Aluminum

- C_{RES} response of the WRe-probes unaffected by wafer surface condition
- On the other hand, the W-probes demonstrated marked differences

Tier 1 Contact Resistance on Wafer (3-mil overtravel at 85°C)

Tier 1 Contact Resistance on Wafer (3-mil overtravel at 85°C)

 SEMATECH
 Applied Precision, Inc.

 Advanced Probing Systems, Inc.
 SWTW '98
 Sandia National Labs

 25

Al-Wafer at 85°C

• Wear and C_{RES}

- Reductions in WRe-probe tip lengths were significantly less than those of the W-probes
- Overall, the WRe-probes demonstrated lower and "more stable" C_{RES} behavior

• Temperature Effects

- <u>Metallurgical fact</u> materials soften with increased temperature
- Rhenium stabilizes small diameter wire grain structure at high temperatures
- Grain structure affects hardness and wear characteristics of probe needles
- The "softening rate" of WRe-probes differs from than that of W-probes

Application of Results "A Thought Experiment"

- Probe card required to test 500K die
- Testing performed at room and high temperature
- "Triple Hit" cleaning every 100 die
 - 7.5K cleaning touchdowns after 250K die
 - 15K cleaning touchdowns after 500K die
- Can an estimate be made of the probe service life?
 - Reduction in tip length
 - Increase in tip diameter

Advanced Probing Systems, Inc.

SWTW '98

Applied Precision, Inc. Sandia National Labs

Advanced Probing Systems, Inc.

SWTW '98

Applied Precision, Inc. Sandia National Labs

Summary TIER 1 ONLY

- No Benchmarking
- Probe Needle Wear
 - Abrasive Cleaning
 - Cleaning pad material is dramatically harder than both probe materials
 - **o** No significant differences in the amount of tip length removed
 - Wear rate "first approximations" based on 15K cleanings: 52 and 48 Å per touchdown for 5-mil and 7-mil probes, respectively
 - Wear rate = *f*(overtravel, scrub length, BCF, etch length, contact materials)

r		
SEMATECH		Applied Precision, Inc.
Advanced Probing Systems, Inc.	SIVITIVI (08	Sandia National Labs
	500100 30	30

• Probe Needle Wear

- Aluminum-wafer at 30°C
 - Difference in wear behavior were observed for the 7-mil probes and not as severe for the 5-mil probes
 - Wear rate "first approximations" based on 500K touchdowns: 700, 560, 600, and 380 Å per 1K-touchdowns for W005, WRe005, W007, and WRe007, respectively
 - Hardness values of the 7-mil WRe-probes were significantly higher than those of the W-probes
 - The 5-mil probes had comparable hardness values and hence demonstrated similar wear characteristics
 - As the diameter of the probe needles decreases, the hardness of tungsten and tungsten-rhenium become similar

• Probe Needle Wear

- Al-Wafer at 85°C
 - Wear differences were exacerbated by the higher temperature
 - Wear rate "first approximations" based on 500K touchdowns: 1100, 700, 900, and 560 Å per 1K-touchdowns for W005, WRe005, W007, and WRe007, respectively
 - Increased temperature results in a thicker Al-oxide layer and a reduction in the probe needle hardness
 - Changes of the WRe-probe tip lengths were significantly less than those of the W-probes
 - Alloying with rhenium stabilizes the grain structure and hardness at high temperatures
 - The temperature dependent "softening" of WRe-probes is different than that of W-probes

• Contact Resistance

- Al-Wafer at 30°C
 - **O** C_{RES} consistency of the W-probes was affected by the wafer surface condition
 - **O** W-probes demonstrated higher C_{RES} values on the "scrubbed" portion
 - WRe-probes demonstrated consistent C_{RES} values regardless of the wafer surface, i.e. "virgin" vs. "scrubbed"
- Al-Wafer at 85°C
 - \circ C_{RES} variance of all probe needles was greater at higher temperature
 - C_{RES} consistency of the W-probes was affected by the wafer surface condition; but not as dramatically as at room temperature
 - C_{RES} behavior of the WRe-probes was unaffected by the wafer surface condition
 - **O** Overall, the WRe-probes demonstrated lower and consistent C_{RES} values

SEMATECH		Applied Precision, Inc.
Advanced Probing Systems, Inc.	S\N/T\N/ '98	Sandia National Labs
	000100 50	33

• Probe Service Life Estimates

- "First approximations of the service life" for Tier 1 were made
- Differences in probe tip wear are over-shadowed by abrasive cleaning
- Service Life = f(temperature, current, overtravel, scrub length, BCF, cleaning frequency, and contact material)
- The results indicate that WRe-probes would provide a longer service life than W-probes at high temperatures

• Benefits of Tungsten-Rhenium

- At room temperature, WRe-probes provide C_{RES} consistency with slight improvements in wear that over-shadowed by abrasive cleaning
- At high temperature, WRe-probes provide C_{RES} consistency and significant improvements in wear

Side Bar

Additional Observations

- C_{RES} values of probes that never touched a wafer were higher than expected
- Cleaning was performed and C_{RES} values were considerably reduced
- Contamination on probe tip surface tungsten-oxide? other residue? who really knows?

• Future Work

- Analysis of Tier 2 and Tier 3 behavior

SEMATECH		Applied Precision, Inc.
Advanced Probing Systems, Inc.		Sandia National Labs
	500100 30	35