APPLICATION SPECIFIC PROBE NEEDLES

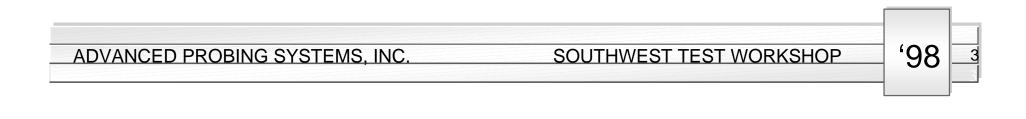
Michelle J. Gesse

Jerry J. Broz, Ph.D.

Advanced Probing Systems, Inc.

Boulder, Colorado

'98


ADVANCED PROBING SYSTEMS, INC. SOUTHWEST TEST WORKSHOP

or... what does the well-dressed probe wear to a testing?

ADVANCED PROBING SYSTEMS, INC. SOUTHWEST TEST WORKSHOP '98

Industry Challenges

- Shrinking Device Geometries
- Reduced Pad Sizes and Pitches
- High Pin Counts and Smaller Probe Diameters
- High Resolution Measurements
- Varied Probing Environments

Challenges for Probes

- Low Frequency (DC) Testing
 - Low Current Applications
 - Isolation
 - Leakage
 - High Current Applications
 - Power Dissipation
 - Series Resistance
- High Frequency (AC) Testing
 - Inductance
 - Probe Impedance
 - Cross Talk
- Probe Needle Service Life
 - Contact Resistance
 - Wear and Cleaning

ADVANCED PROBING SYSTEMS, INC.

SOUTHWEST TEST WORKSHOP

'98

Probe Needle "Solutions"

• Silver Plated Probes

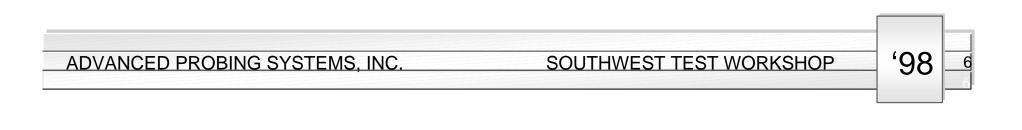
- Reduction in probe resistivity
- Improved current carrying ability
- Limited high frequency benefits

• Insulated Probes (TIP-MTM)

- Dielectric coating on probe needles
- Improved isolation
- First step in the development of a shielded probe needle

• N-TIPTM Plated Probes

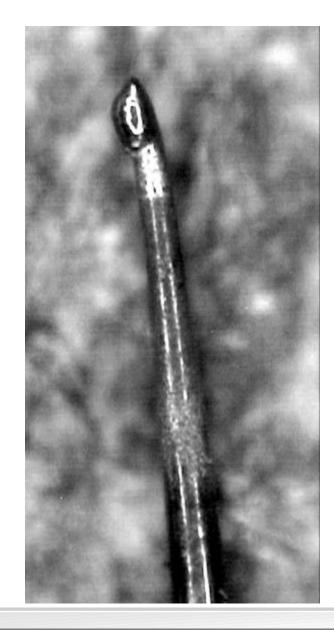
- Greater tip hardness
- Lower contact resistance
- Prolonged service life


ADVANCED PROBING SYSTEMS, INC.

SOUTHWEST TEST WORKSHOP

- Electrical properties of electro-deposited metals are affected by the bath chemistry, bath impurities, current density, and additives
- Tungsten and tungsten-rhenium probes are traditionally nickel plated to facilitate solderability
- Silver is significantly more conductive than tungsten, tungstenrhenium or nickel

Tungsten	Tungsten- Rhenium	Plated Nickel	Plated Silver
5.5 to 5.9 μΩ–cm	9.2 to 10.1 μΩ–cm	7 to 40 $\mu\Omega$ –cm	1.6 to 3.2 $\mu\Omega$ -cm


- Reduction in overall probe needle resistance
- Increase in probe needle current carrying capacity
- Overall increase in the power dissipation

Plated Probe Needle (plate thickness = 200 µin on a 2.0 inch probe needle)	Nominal Resistance Nickel Plated Probe (mΩ)	Nominal Resistance Silver Plated Probe (mΩ)	% Reduction Resistance	% Increase Current Carrying Capacity
Tungsten				
5	229.4	148.7	35.2	19.5
6	158.9	109.6	30.9	16.9
7	114.8	83.4	27.3	14.8
8	87.5	66.0	24.6	13.2
10	56.1	44.5	20.7	10.9
Tungsten-Rhenium				
5	376.1	198.9	47.1	27.3
6	260.0	149.9	42.3	24.1
7	188.7	116.6	38.2	21.4
8	140.3	92.1	34.4	19.0
10	89.7	63.3	29.4	15.9

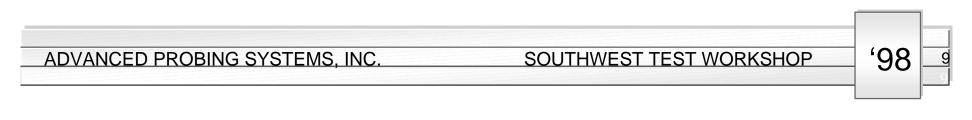
ADVANCED PROBING SYSTEMS, INC.

SOUTHWEST TEST WORKSHOP

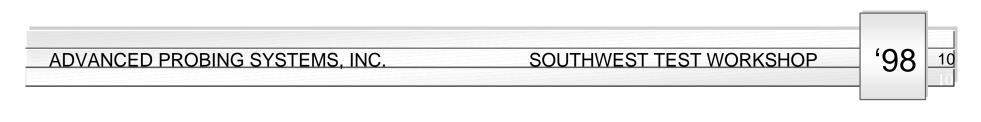
'98

Case Study - Burnt Probe Tips

- The high current being passed through power pins of probe cards built by Probe and Test, Inc. resulted in burnt probe tips
- This problem was successfully addressed by the use of silver plated probes within specific locations in the probe card.

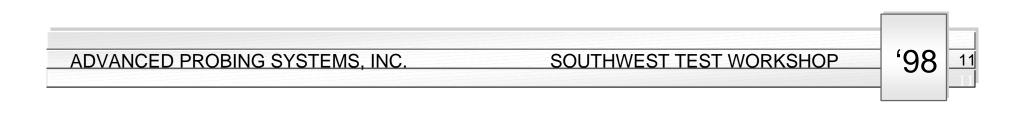

ADVANCED PROBING SYSTEMS, INC

SOUTHWEST TEST WORKSHOP

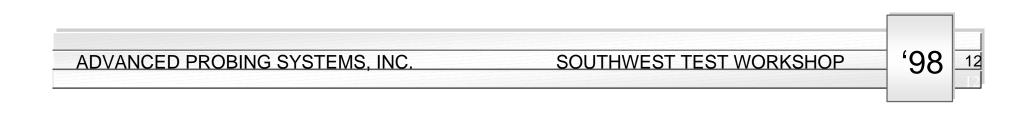

'98

• Signal loss occurs as the testing frequency increases

- Non-uniform current density
- Signal loss due to "Skin Effect"
- Decrease in the effective bandwidth
- Potential high frequency benefits of silver plating
 - Shallow skin depth
 - Improved AC resistance
 - Reduced signal loss
- The effects of silver plating on the probe's AC behavior were simulated by GigaTest Labs, Inc.

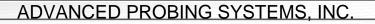


- Signal loss characteristics of tungsten and tungsten-rhenium probe needles (5, 6, and 7 mil dia.) were simulated
- The frequency dependent response of silver plated probes was compared to that of nickel plated probes
- Signal loss vs. frequency was evaluated over a frequency range of 100 kHz to 5 GHz
 - 50 Ω impedance test environment to ensure that electrical performance differences were only due to the needle and plating differences
 - 100 Ω impedance test environment to better represent the probe card application



• Loss in a 50 Ω impedance environment

Plated Probe Needle (plate thickness = 100 µin)	Loss at 1 GHz (dB)		Loss at 2 GHz (dB)	
Tungsten	Nickel Plated	Silver Plated	Nickel Plated	Silver Plated
5	0.8	0.4	1.1	0.5
6	0.6	0.3	0.9	0.4
7	0.5	0.3	0.8	0.4
Tungsten-Rhenium				
5	0.8	0.4	1.2	0.5
6	0.7	0.3	1.0	0.4
7	0.6	0.3	0.8	0.4



- Loss in a 100 Ω impedance environment
 - Probe material and plating have less of an effect on the bandwidth than inductance
 - The best way to increase bandwidth is to reduce probe needle inductance
 - Reductions in probe length have a greater effect on induction than increases in probe diameter
- Some needle arrangements within a probe card approximate twowire or co-planar transmission line configurations
- If the impedance environment for the probes is less than 100 Ω , the silver plating may reduce signal loss

What does the well-dressed probe wear to a testing?

Probe Needle "Solutions"

• Silver Plated Probes

- Reduction in probe resistivity
- Improved current carrying ability
- Limited high frequency benefits

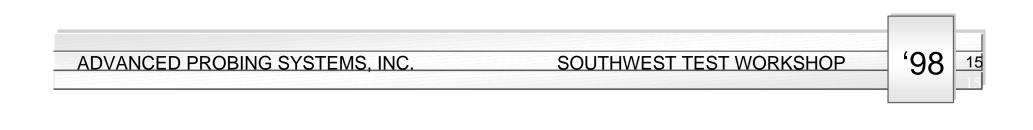
• Insulated Probes (TIP-MTM)

- Dielectric coating on probe needles
- Improved isolation
- First step in the development of a shielded probe needle

• N-TIPTM Plated Probes

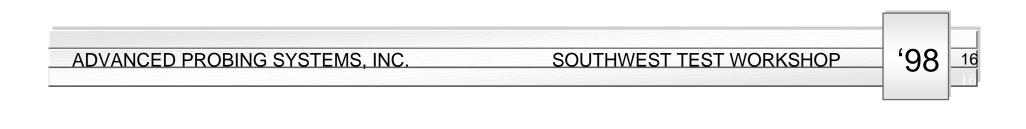
- Greater tip hardness
- Lower contact resistance
- Prolonged service life

ADVANCED PROBING SYSTEMS, INC.

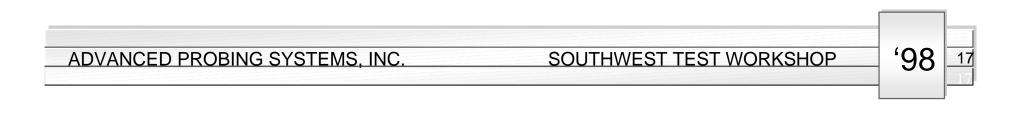

SOUTHWEST TEST WORKSHOP

'98

$TIP-M^{TM}$


(Thermoset Insulating Polymeric Material)

- DUT requirements (i.e., small pitches and high pin counts) reduce signal isolation between probe needles
- Probe card leakage performance and signal integrity are affected
- Leakage current can flow between probes within the epoxy ring of a probe card
- A reduction in the leakage current between probe needles may be accomplished with improved signal isolation

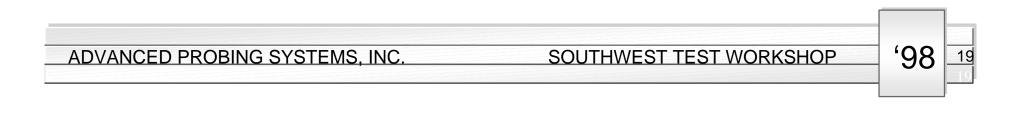

$TIP-M^{TM}$

PROPERTY	TIP-M TM		
<i>Physical:</i> Appearance of 0.1 to 0.5 mil coating	Light to Dark Amber		
Solderability	Removable with Solder Iron		
Mechanical:			
Bond Strength - 2 mil thickness at 25°C	43 lbs		
Durometer Hardness (ASTM D2240)	Shore A92		
Electrical:			
Dielectric Strength (ASTM D149)	3,100 volts/in		
Volume Resistivity (ASTM D257)	$> 10^{15} \Omega$ -cm		
Dielectric Constant (ASTM D150)	1 MHz = 3.2		
Thermal:			
Degradation Temperature	$> 200^{\circ}$ C		
Solvent Resistance (2 hour immersion):			
Acetone and IPA	Excellent		

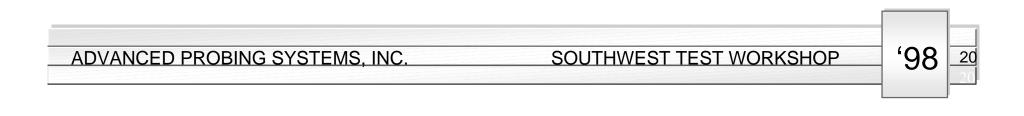
$TIP-M^{TM}$

- TIP-MTM provides an appropriate substrate onto which a highly conductive layer can be added
- A "shielded" probe needle is obtained by application of a conductive layer to the insulated probe needle
- Shielded tungsten, tungsten-rhenium, and beryllium-copper probe needles are in the final phases of development

What does the well-dressed probe wear to a testing?


ADVANCED PROBING SYSTEMS, INC.

SOUTHWEST TEST WORKSHOP


Probe Needle Wear and Service Life

- Tungsten (W) versus Tungsten-Rhenium (WRe) Probes
 - The addition of Re results in alloy with
 - More refined microstructure
 - Improved hardness and wear characteristics
 - Increased ductility
 - Greater yield strength
- Wear resistance and contact resistance stability of WRe probes are attributable to increased hardness and refined microstructure

Probe Needle Wear and Service Life

PROPERTIES	W	WRe	BeCu
Elastic Modulus (GPa)	394.5 ± 6.1	395.7 ± 6.4	131.5 ± 5.5
Flexural Yield Strength (GPa)	5.52 - 6.05	5.95 - 6.48	2.90 - 3.10
Flexural Yield Strain (mm/mm x 10 ⁻³)	13.7 – 14.3	15.3 – 15.9	22.4 - 24.0
Vicker's Hardness (100 gm load) (kg/mm ²)	665 – 738	745 – 877	288 - 325

Probe Needle Wear and Service Life

• Contact Resistance during Test

- Metallized or "Setup" Wafer
 - Aluminum oxide on contact pads
 - Adhesive interactions at the probe-pad interface
 - "Self cleaning" with sufficient scrub
 - Increased film resistance
- Production Wafer
 - Residues from IC production processes
 - Adsorbtion of airborne contaminants on contact pad
 - Adherent probe tip contaminants
 - Significant increase in contact resistance

ADVANCED PROBING SYSTEMS, INC. SOUTHWEST TEST WORKSHOP '98 21

Probe Needle "Solutions"

• Silver Plated Probes

- Reduction in probe resistivity
- Improved current carrying ability
- Limited high frequency benefits

• Insulated Probes (TIP-MTM)

- Dielectric coating on probe needles
- Improved isolation
- First step in the development of a shielded probe needle

• N-TIPTM Plated Probes

- Greater tip hardness
- Lower contact resistance
- Prolonged service life

ADVANCED PROBING SYSTEMS, INC.

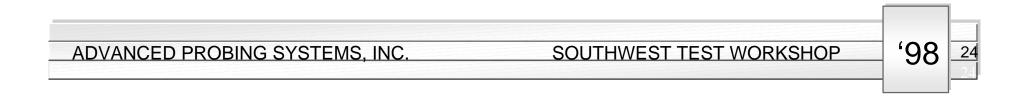
SOUTHWEST TEST WORKSHOP

'98

N-TIP^{тм} (The "Noble" Probe Needle Tip)

• N-TIP TM Plated Probe Tips

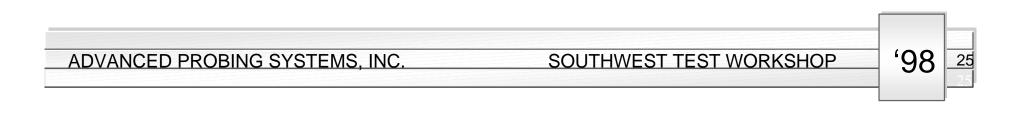
- Advantages
 - Reduced adhesion between probe tip and contact pad materials
 - Excellent oxidation resistance
 - Low contact resistance
 - Extremely high hardness, i.e., enhanced wear and abrasion resistance

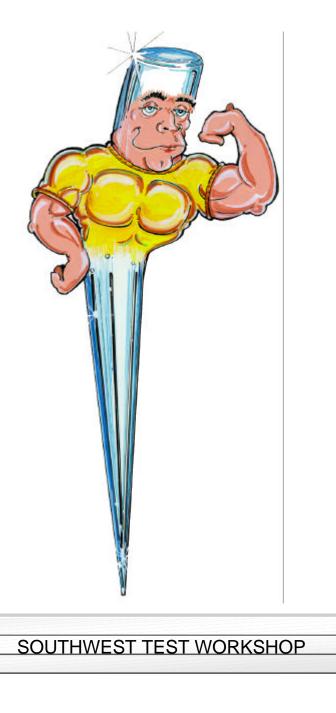

'98

- May prolong the service life of "softer" probe needle materials
- Drawback
 - Abrasive cleaning will remove the material
 - Production issues

ADVANCED PROBING SYSTEMS, INC. SOUTHWEST TEST WORKSHOP

N-TIP^{тм} (The "Noble" Probe Needle Tip)


PROPERTIES	W	WRe	BeCu	N-TIP [™] Material
Resistivity (μΩ-cm)	5.5 to 5.9	9.2 to 10.1	6.1 to 7.9	4.2 to 8.4
Knoop Hardness (kg/mm ²)	705 to 810	780 to 875	300 to 350	750 to 1000


N-TIP^{тм} (The "Noble" Probe Needle Tip)

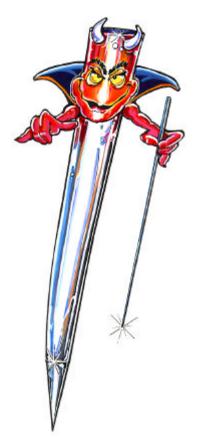
• Wear Life Experiment

- Probe card built by MicroProbe, Inc.
 - "Standard" tungsten and tungsten-rhenium probe needles
 - Tungsten and tungsten-rhenium probe needles with N-TIP TM plating
- Touchdown testing performed on an aluminized wafer
 - Effects on contact resistance were evaluated
 - Probe tip metrology was used to quantify differences in wear characteristics
- Results
 - No significant benefits for tungsten-rhenium
 - There was an obvious advantage for N-TIPTM tungsten vs. standard tungsten
 - There may be applications for N-TIP[™] on softer probe materials and in vertical probing

What does the well-dressed probe wear to a testing?

ADVANCED PROBING SYSTEMS, INC.

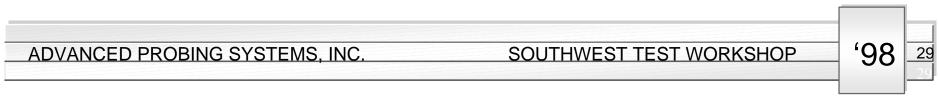
Summary


- "Standard" probe needle performance can be enhanced to address the challenges of wafer test
- Application of specialty coatings and plating materials can result in:
 - Improved electrical properties
 - Reduced signal loss
 - Extended service life

ADVANCED PROBING SYSTEMS, INC. SOUTHWEST TEST WORKSHOP '98

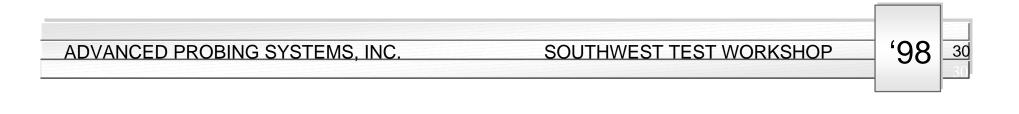
In 1997, APS dispelled the myth . . .

Whatever goes wrong, the probe needle did it!



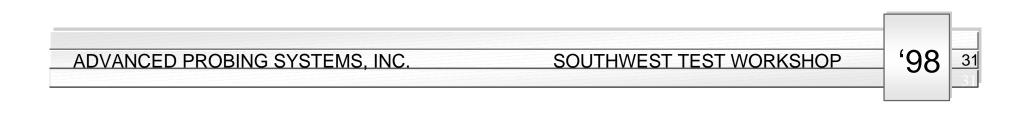
ADVANCED PROBING SYSTEMS, INC. SOUTHWEST TEST WORKSHOP '98 28

In 1998, when it all goes right . . .


THE PROBE NEEDLE <u>DID</u> DO IT!

Acknowledgments

- GigaTest Labs, Inc., Cupertino, CA
- MicroProbe, Inc., Carlsbad, CA
- Probe and Test, Inc., Santa Clara, CA



Please direct any questions and/or requests for additional information to:

ADVANCED PROBING SYSTEMS, INC. P.O. BOX 17548 BOULDER, CO 80308

Michelle J. Gesse, President Jerry J. Broz, Ph.D., Research & Development

Phone: 303-939-9384 Fax: 303-939-9032 "Applications" E-mail: aps@AdvancedProbing.com

