Halving Cost of Test Using Parallel Multi-Die Approach for Mixed Function Testing Hervé DESHAYES STMicroelectronics

COTRED Project

- Funded by European Union under ESPRIT program
- Semiconductor Equipment Assessment
- STMicroelectronics, TEMIC-MHS, Schlumberger ATE
- Assessment of tester designed to reduce Cost of Test

COTRED Project Objectives

- To halve the Cost of Test of complex microcontrollers, comprising purely digital and/or embedded analog functions
- To ensure that ITS 9000*CV* fulfills the technical requirements of the users
- To evaluate the single to parallel program transfer efficiency and ease of use

Microcontroller Test Requirements

- Product complexity
 - Match mode
 - Analog
 - A/D and D/A
 - Wireless applications
 - TV applications
 - Embedded memories (ROM, EPROM, E²PROM, Flash)
 - Timing and level calibration

- Test at speed
 - 4MHz to 80MHz
 - Test time between 1 and 10 seconds
- Pad pitch and die area

Why Parallel Test?

- Test more units with the same investment
- Optimize all hardware resources
 - QFP80 by 2
 - SDIP56 by 3
 - SO28 by 6
 - DIP16 by 8

- Better Return on Assets
 - Low ASP of
 Microcontrollers (declining by 10% per year)
 - VLSI testers cost from \$0.5M to \$2M

Slide 5

 High pin count needed for some low volume parts

Cost of Test Analysis

- Test-related spending
 - Operating cost
 - Ramp up cost

- Maintenance cost
- Capital equipment cost
- Using ACOLYTE[©]
 - EXCEL® based cost analysis model
 - 126 parameters

Key for Cost of Test Reduction

Sensitivity: COT vs ATE cost, # of sites

Issues for Parallel Test

- Wafer sort
 - Probing issues: pitch, layout, use of vertical probing
 - Handling and index time compared to test time
- Final test
 - Parallel handler (high parallelism & high efficiency)
 - Sorter and index time compared to test time

- Partner approach is mandatory
- Tester optimized for parallel test
 - Minimal overhead
 - Parallel resources

Importance of Overhead

Sensitivity: COT vs. Overhead, # of sites

Hervé DESHAYES - SOUTHWEST TEST WORKSHOP - 98

Slide 10

Achievement at STMicroelectronics

- Test Time \Rightarrow Test $_time_n \approx Test _time_1$ - overhead is minimal
 - COT = a + d = (The acceleration)
- COT per die (Throughput)
 - All products are tested by 2, 3, 4 or 6.
 - Transfer of single program into parallel automatic
 - Vertical probing using COBRA technology.

Wafer Test Time vs. # of sites

Hervé DESHAYES - SOUTHWEST TEST WORKSHOP - 98

[®] Slide 12

Cost of Test Reduction at **STMicroelectronics**

- Overall global gain ratio compared to single site
 - Wafer sort > 3
 - Final Test > 2

COTRED objective exceeded: COT reduced by 70%

ITS 9000CV features

- Parallel by 16
 - 8 per test head
 - 2 test heads
 simultaneously
- Parallel test program
 - Automatic transfer from single test program

- All tests (DC, ftest, APG scan, match, DAC/ADC) can be executed in parallel.
- Full compatibility with ITS9000 Family.

Slide 14

• Meets COTRED objectives

Key for Cost of Test Reduction

Sensitivity: COT vs ATE cost, # of sites

Conclusion

- The only effective way to reduce the cost of Test is to maximize parallel capability.
 - not only software but also hardware
 - all test features must be in parallel

Future of Parallel Test

- The number of test sites will increase (tester, prober, handler, probe card)
- More parallel resources