Overview of WLBI system approaches

Larry Gilg MCC Austin, Texas (512)338-3748

0.0

Trends in the Electronics Industry

IC Technology

- —Higher pin count
- —Higher power
- -Higher speed

Major Drivers

- -Cost/Performance
- —Quality
- —Time-to-Market
- -Product Miniaturization, i.e. lighter, thinner, shorter, and smaller

IC quality & reliability

Test

- —Finds manufacturing defects that cause failure
- -Not feasible to search for all potential defects
- —One second on VLSI tester 2¢ to 15¢
 - » Exhaustive testing all combinations not economically feasible

Burn-in

- -Stress causes weak devices to fail
- —Temperature stress
- -Voltage stress

Test during burn-in

- -Long cycle functional testing is time-consuming
 - » Trend to offload to lower cost TDBI systems

Burn-in Cost Trend is Not Sustainable

- Burn-in is a requirement for latest generations of VLSI devices
 - -New failure modes emerging due to shrinking geometries
 - -Researchers have failed to find an effective alternative
- Show stopper for many applications dependent on advanced packaging (i.e., KGD)

Wafer Level Probing Lowers Burn-in Cost

- MCC cost models predict 50% cost savings for wafer level burn-in wrt current practice
 - -Other savings also significant
 - » Reduced IC fab/assembly/test cycle time, lower WIP
 - » Improved reliability feedback and control
 - » Enables new paradigm for assembly & test
- Full wafer probing for IC burn-in/test is achievable now
- Key components of Wafer Level Burn-in/Test (WLBT) system now coming into focus

IC "Back-end" Processes

Wafer Fab

WLBT Cost Comparison

- Fixed quantity of product each year
- 1 Meg FSRAM product
- Have sufficient capacity to keep product moving

WLBI Cost Saving

- Graph shows cost of scrapping packages
- Assumes 80% final test yield, 2%
 burn-in fallout

IC Product	Final Test Yield		
8-Bit MPU	95%		
20,000 Gate Array	90%		
4M DRAM	95%		
16M DRAM	90%		
64M DRAM	75%		
4K GaAs SRAM	80%		
32-Bit MPU (386)	90%		
32-Bit MPU (P54C)	75%		

<u>-Typical Final Test Yields</u>

MAG

WLBT Value Added

Laser repair of burn-in fails is feasible after wafer level burn-in, but not available after pkg burn-in

Assumptions

- 50% repairability of burn-in fails
- **Distribute ASP** of repaired die over population

0.0

9

1992

1600

1200

600

400

Additional WLBT Benefits

Fully Automatable

- -Reduce load/unload time
- -WLBT fits into highly automated IC assembly processes
 - » Potential for inventory reduction
 - » Cycle time improvements

Keep from packaging (or shipping) weak devices

- -Yield loss at WLBT recoverable by laser repair
- -Early identification of "rogue" lots
- —Enabler for "single insertion" test/screening
 - » All die fully conditioned at wafer level
 - » Solution for KGD (Flip-chip)

Rapid reliability feedback on wafer/lot basis

—Improves time-to-volume

Eliminate traditional wafer probe step

-Massively parallel test during burn-in reduces time spent on expensive VLSI tester

Wafer Burn-in Worldwide

WBI Technology for Ram's*

- -Memory Cell DC Stress to screen Bit Failures
- -Entire RAM Dynamic Stress for remaining failures

WBI suppliers

- -Espec
- —Asia Electronics

Several captive programs

- -Some IC manufacturers developing hardware
 - » Cost effective KGD
 - » Reduce cycle time
 - » Improved reliability feedback
 - » Potential for laser repair of DRAM burn-in fails

* Furayama, et al. Wafer Burn-in (WBI) Technology for RAM's —IEDM-93

Hypothetical 200mm Wafer Parameters

Die:	652		
Signal Pads:	18,908		
Power Pads:	2608		
Total Pads:	21,516		
Total Power:	650 W		

Feasibility Criteria Target Product Specification

Attribute

Diameter Pad Metallurgy Minimum Passivation Well (Pad) Size Maximum Passivation Well Depth Minimum Pad Pitch Maximum Pad Density Maximum Z Variation, Pad-to-Pad Maximum Power Density 200mm Aluminum/Sn-Pb

75μ Χ 75μ

8.0 μ m 150 μ peripheral, 200 μ array 150 pads/cm²

1.0μm 5 W/cm2

Temperature Range Maximum Burn-In Time Clock Frequency 25ÞC - 150ÞC 168 hrs DC - 20 Mhz

Feasibility Criteria Target Probe Coupon

Attribute

Probe Coupon Diameter Dimensional Tolerance Maximum Probe Point Size Maximum Probe Point Current Maximum Probe Point Resistance **Minimum Reuses, Same Pad Minimum Lifetime, Reuses Minimum Lifetime, Hours at Temp. Maximum Isolation Resistor Density Isolation Resistor Values** Max. Isolation Resistor Voltage Drop Max. Unisolated Signal Line Res. Max. Voltage Variation, VCC to Grnd **Power Isolation**

Decoupling Capacitors

Specification

250mm $+/-12\mu m$ absolute 25µm X 25µm 100mA 1.0ž 3 200 5000 150 resistors/cm² 5kž - 20kž 7.5V100ž 5% Must be provided. Max. 3 die/cm² Must be provided as needed

WLBT Challenges

Probe card

-High density interconnect

-CTE matching of probe to silicon

- —Co-planar probe tips
- —Uniform, "low" resistance contacts to aluminum pads/solder bumps

Probe card environment

- -Precise alignment of probe to wafer
- —Uniform force delivery of probes to wafer
- -Mechanically decouple probe card from system
 - » Cte matched components independent of non-Cte matched components
- —Thermal management of junction temperatures
 - » All die subjected to uniform stress
 - V, T, ramp

Three-Layer Probe Isolates Challenges

Can optimize each piece

- -Multiple layers for high density routing
- -Compliant material to "soak up" nonplanarities
- —Robust probe points for probing Al pads

Existence Theorm

- Matsushita Electric Industrial Co. Ltd has developed a 3 layer probe card
 - -Membrane-type probe points
 - -Compliant z-axis conductor
 - -Glass substrate multilayer
- Probe card components Cte-matched to Silicon
- Uses atmospheric pressure for contact force

WLBT System

- Wafer cassette incorporating probe card
- Cassette Loader/Unloader based on auto-prober
- Standard wafer-handling equipment
- System development focuses on interface specifications

Wafer Cassette

Wafer Level Burn-in System

Potential WLBI

System market

8'' wafers/day	1996	1997	1998	1999	2000
16M DRAM	15353	17890	22696	15293	9753
64M DRAM	674	5721	15825	44033	72849
256M DRAM	0	0	0	1715	1353
1M SRAM	6279	10022	13063	16082	18400
(32 bit+) µP	4789	6082	7173	7940	9058
Candidate Product (wafer	27096	39715	58756	85063	111414
New capacity this year		12619	19041	26307	26351
% WLBI	0%	0%	0.001%	0.050%	2.000%
\$450K/x10 station	\$0	\$0	\$26,440	\$1,887,478	\$98,358,411

WLBT System Wish List

Probe Card

—<\$10K

—100% yield

—Quick Turn

Cassettes

-Controlled environment

—One design fits particular wafer size (150mm, 200mm, 300mm, . . .)

Utilize existing equipment for off-line alignment station and test electronics

-Greatly improved equipment utilization

Quick Turn Multilayer Interconnect Using LDW

Cut Site

WLTB Probe Laboratory

Mechanical Fixture

- Test Electronics
 - Up to 2000 pins
 - Total Current source up to 330A @ 8.0V

Mechanical Fixture

- Wafer Size Up to 8"
- Force 4 6000 lbs, 2 lb resolution
- Alignment +/-0.5 mils
- Planarization Self-Planarizing
- Chuck Vacuum chuck with active cooling

Interview of the second sec