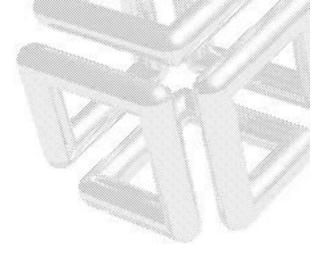


"Scotty, I need more power!"

Dale Slaby

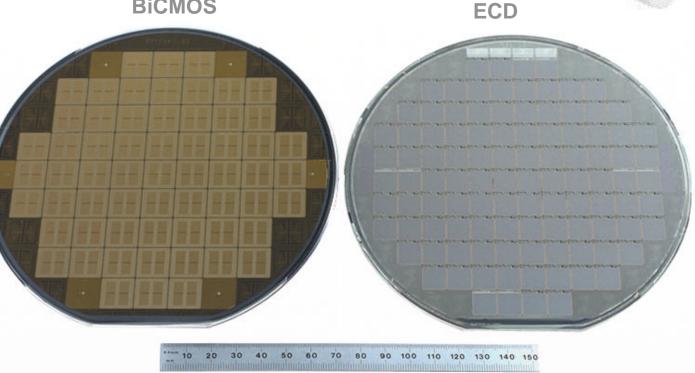


SGI / Cray Proprietary 9/12/98

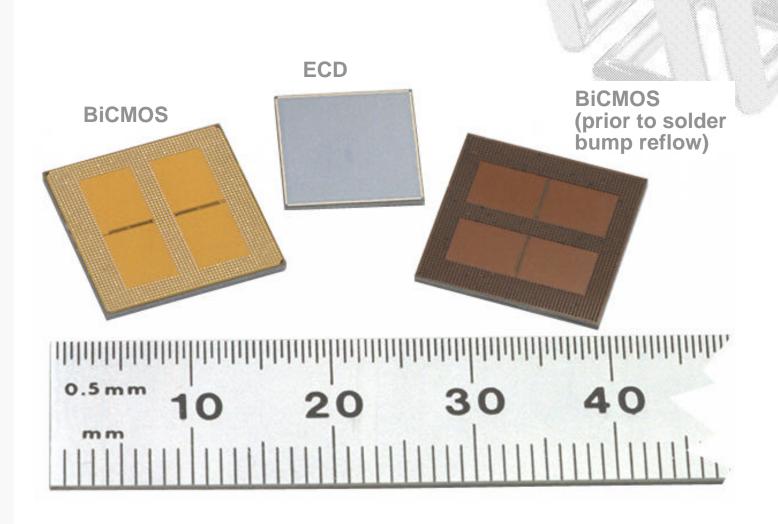
Background

- 13.78 x 13.78 mm sq. die size
- 1485 total power/ground and I/O
- 699 power/ground
- 46 wafer-level test I/O
- BiCMOS technology
- Dual-rail supply (-2.7 V / -3.3 V)
- Initial power estimate at 70 W nominal
- Solder ball implementation

Die I/O Pattern


CC (3 CA) 17 (7 CA)				000			00				00					00				24	00000000000000000000000000000000000000	9]			00						
AT AE AB AD AD AD AD AD AD									00000		00000					00000				00000					000000000000000000000000000000000000000				00		
	8882:		SAS		44	A							1				2 2	R	* 1	. 2	2 :	2 5	2	2 :		2 !	= 2	2 :	2 1	81	2.3
्र र	iew of	Circu	ut S	iđe					•			Si: Ve	-	и.	10																
Y					of I	Die	e.	1	Ø	3	46	Ye	c																		
(\$	Solder I																														
(\$	Balls Uj	p)		1					0	1	24	Ye	e4																		

SGI / Cray Proprietary 9/12/98


BiCMOS and ECD Wafers

BiCMOS

BiCMOS and ECD Die

Decisions...Decisions

- Wafer probe appeared improbable
- Investigated Temporary Chip Attach (TCA)
- TCA cost vs. volume advantage
- Extra handling and rework
 - Option to burn-in utilizing TCA
- Some risks and infancy of technology
- Needed to find an alternative

Requirements

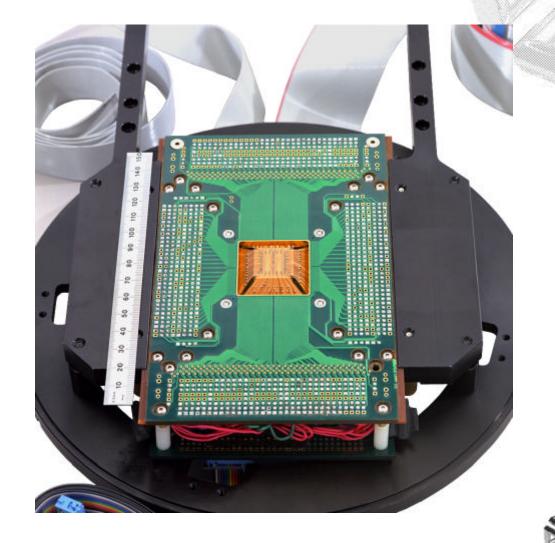
- Power up to 100 W nominal; 150 W worse case!
- Heat flux density at 2.5 W / mm sq.
- Thermal manage core and wafer under full power
 - Implement DC parametrics, BSCAN and at-speed BIST with reduced pin set
- Maintain minimal IR drop across hardware and core
 - Balanced power distribution
- Minimal solder ball deformation
- Thermal monitor capability
- 2 GHz bandwidth for at-speed tests (required membrane core)
- Alignment windows through membrane core
 - Reliable and repeatable touchdowns

Hardware

Thermal Chuck from Temptronic Corporation

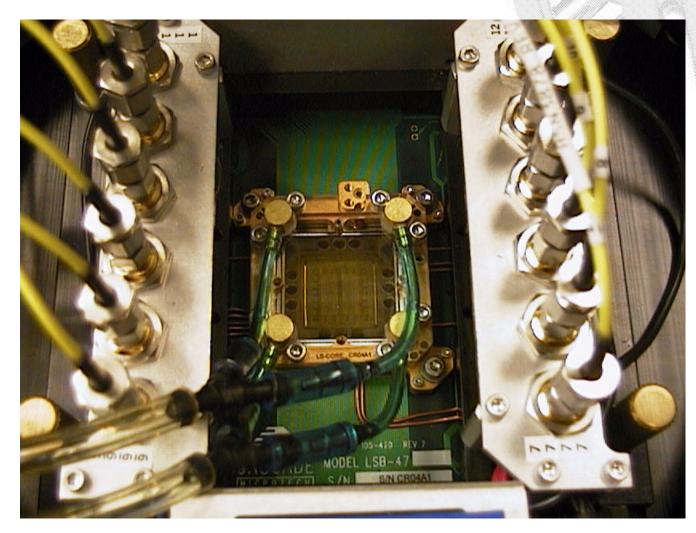
- Co-developed with two technology partners
- Circular grooves for vacuum and helium
- Water cooled with 6" custom chuck plate for SGI/Cray
- **Electroglas 3001X Probe Station with High Z-force Stage**
 - Allowed adequate force for high pin count contact force
 - Cascade Microtech Membrane Core/Probe Card
 - Capable of contacting desired solder balls easily
 - Offered controlled impedance out to solder ball
 - High bandwidth interconnect / metal trace
 - Minimal contact area on solder ball reduces deformation/rework

Close-up of Thermo-chuck



Cascade Membrane BiCMOS Wafer Test Head

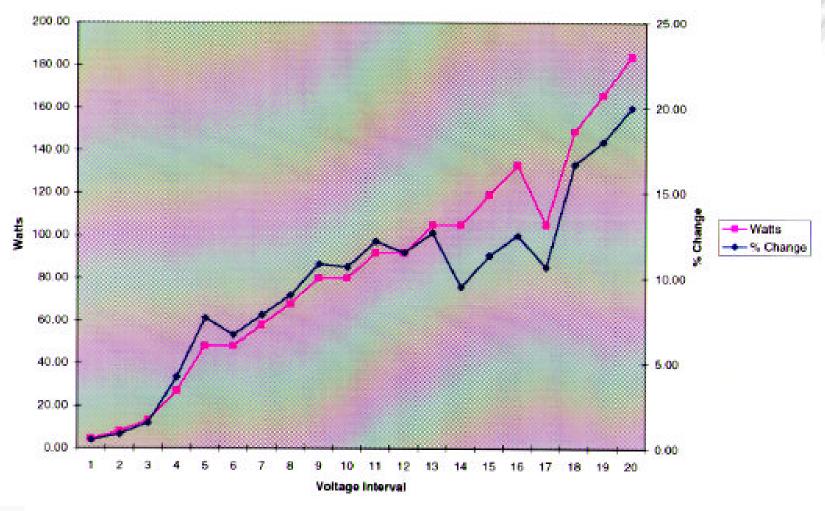
Cascade Membrane BiCMOS Wafer Test Head



Core Layout / Features

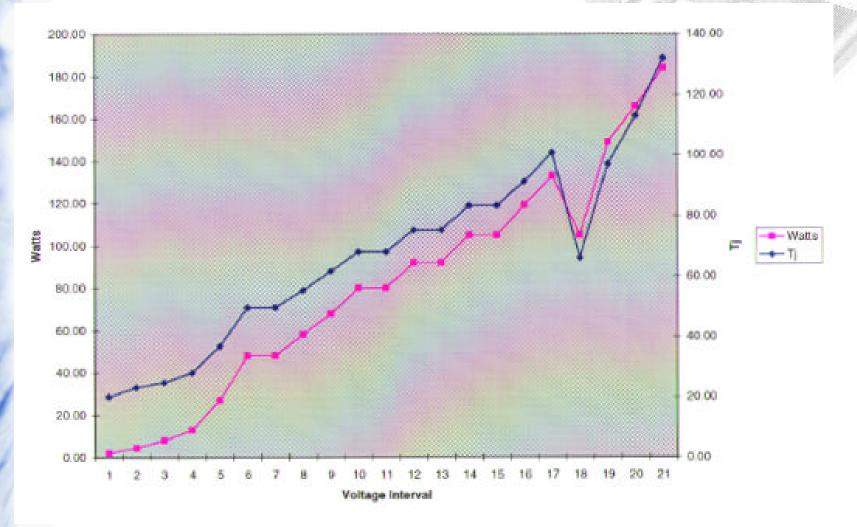
- Dual-power rail distribution with minimal drop
 - *Current capability > 70 amps*
- R-loop resistor for thermal monitoring on high-current wings
 - Optimized for memory and CPU ASIC options
- 25-m core bumps for excellent electrical contact and minor deformation
- Allowed for 5-7 mils overtravel, which reduced planar issues
- Creative air manifold to maintain thermal control of membrane core
- Ability to mount caps close to bumps for high-frequency noise reduction
- View windows for wafer to core-bump alignment

Top View of Membrane Core



Membrane Core Test Data

	Full Po	wer UP of	TMTC 1	109 W3 v	v/no He	on Chuo	ck@ 20C	(2/12/98	3)				
Wafer Tcr @ 1.25 ohms/ Die Location x6,y7													
	Volts	ee1 Cor	lee1 I/O	Watts >	6Chang	RL1	RL3	RL4	TR2	TR3	Tj (C)	Comments	
	0.40	3.75	1.19	1.98		7.80	6.46	6.52	403.00	399.00	20.00	TR@20C	
	0.60	5.58	1.79	4.42	0.50	7.83	6.48	6.55	406.00	403.00	23.20		
	0.80	7.41	2.37	8.00	0.83	7.85	6.50	6.57	408.00	405.00	24.80		
	1.00	9.30	2.96	13.00	1.50	7.89	6.53	6.62	411.00	409.00	28.00		
_	1.50	13.80	4.40	27.00	4.17	8.05	6.67	6.78	421.00	420.00	36.80		
	2.00	18.20	5.85	48.00	7.67	8.26	6.87	7.03	435.00	436.00	49.60	@35psi	
	2.00	18.20	5.85	48.00	6.67	8.20	6.79	6.94	435.00	436.00	49.60	@50psi	
	2.20	19.90	6.40	58.00	7.83	8.27	6.85	7.02	441.00	443.00	55.20		
_	2.40	21.50	6.96	68.00	9.00	8.34	6.93	7.12	448.00	451.00	61.60		
	2.60	23.30	7.53	80.00	10.83	8.45	7.01	7.22	455.00	459.00	68.00	@50psi	
	2.60	23.30	7.53	80.00	10.67	8.44	6.98	7.17	455.00	459.00	68.00	@60psi	
-	2.80	24.70	8.05	92.00	12.17	8.53	7.07	7.28	463.00	468.00	75.20		
	2.80	24.70	8.05	92.00	11.50	8.49			463.00	468.00	75.20	@65psi	
	3.00	26.30	8.59	105.00	12.67	8.56			471.00	478.00	83.20		
_	3.00	26.30	8.59	105.00	9.50	8.37	6.94	7.13	471.00	478.00	83.20	Dual	
	3.20	28.10	9.17	119.00	11.33	8.48	7.01	7.22	479.00	488.00	91.20	Manf'd	
_	3.40	29.50	9.71	133.00	12.50	8.55	7.08	7.30	488.00	500.00	100.80	line @60	
	3.00	26.30	8.59	105.00	10.67	8.44					66.00	He &	
	3.60	31.24	10.26	149.00	16.67	8.80					97.00	dedicated	
	3.80	33.00	10.80	166.00	18.00	8.88					113.00	manifold	
_	4.00	34.79	11.35	184.00	20.00	9.00					132.00		



Power vs. R-loop Change

Power vs. Junction Temperature (Tj)

Conclusion

- Successful management of die Tj's up to 180 W of device power!
- Uniform contact of all solder bumps
 - Minimal contact resistance after many touchdowns
- CTE mismatch managed with adequate membrane and wafer cooling
 - **No smearing or excess stress observed**
- Membrane layout yielded relative ease in wafer to bump alignment
- Thermal chuck design with helium impingement reduced thermal resistance by ≥ 20%
- Readiness to thermally manage wafer-test environment for actual options

Acknowledgments

- Cascade Microtech Ken Smith
 Temptronic Corporation Ken Cole, Ron Difilippo
 Electroglas Bastiano Mancuso
- SGI/Cray Mike Higgins, Joe Christensen, Nick Krajewski, Nancy Burgess, Craig Swoboda, Warren Kerola

