

Using AVI (AUTOMATIC VISUAL INSPECTION) for Probe Mark Inspection and **Implementing AVI** into the **Test Floor Production Process** Texas Instruments, Hiji Mamo Matsushime Mike Clay STI, Inc. June 12, 2000

Part One:

Using AVI for Probe Mark Inspection

OUTLINE

 Probe Mark Defects Detectable
 Bond Pad Damage Detection as qualified at CM I

 capture rate and range

 Bond Pad Damage Detection as quantified at T I

 accuracy correlation

Probe Mark Defects Detectable with AVI: Edge Excursion

4

Probe Mark Defects Detectable with AVI: Pad Discoloration

Probe Mark Defects Detectable with AVI: Pad Damage

6

Bond Pad Damage Detection: As Qualified at Cypress Semiconductor, Minnesota

Accuracy and Repeatability for Percentage of Pad Damage: Capture Rate and Range

Sample= 289 die								
Max area pass/fail setting		Manual count	AVI Count	Fail to capture	False defects	% fail to capture	% false cap	oture
30%		39	39	0	0	0%	0.00%	
29%		39	39	0	0	0%	0.00%	
28%		39	39	0	0	0%	0.00%	
27%		39	39	0	0	0%	0.00%	
26%		39	39	0	0	0%	0.00%	
25%		39	39	0	0	0%	0.00%	
	NOTE: DIE	E LEVEL IN	SPECTION					

** Bond pad level probe mark area inspection accuracy is 2.3%. Range determined by testing one borderline bond pad (56 pixels = 25% area probed) 100 times.

Low	24.6	
High	26.9	
Range	2.3	%

[These data provided by Dane Christian, Cypress Semiconductor]

Bond Pad Damage Detection: As Quantified at Texas Instruments, Dallas

Accuracy Correlation:

AVI, Dallas Wafer Test Site and Off-Shore Assembly Site

Dallas Inspection (Manual) Vs. AVI

Bond Pad Number

[These data provided by Jerry Broz, Texas Instruments - Dallas]

Bond Pad Damage Detection: As Quantified at Texas Instruments, Dallas

Accuracy Correlation:

AVI, Dallas Wafer Test Site and Off-Shore Assembly Site

Offshore Inspection (Manual) Vs. AVI

[These data provided by Jerry Broz, Texas Instruments - Dallas]

Bond Pad Damage Detection: As Quantified at Texas Instruments, Dallas

Accuracy Correlation:

AVI, Dallas Wafer Test Site and Off-Shore Assembly Site

Offshore Inspection (Manual) Vs. Dallas Inspection (Manual)

[These data provided by Jerry Broz, Texas Instruments - Dallas]

Part Two: Implementing AVI into the Test Floor Production Process

11

AVI System WAV-1000

June 12, 2000

THE WORLD LEADER IN DSP AND ANALOG

TEXAS INSTRUMENTS

12

Fast Forward

PURPOSE TO IMPLEMENT AVI

- To provide AVI(Automated Visual Inspection) system within TIJ Hiji to detect accurately visual anomalies defect on patterned wafer with reasonable price.
- Productivity improvement compared with human inspection with metal microscope.
- Short operator training period.
- Full time operate possibility.(24Hr./Day)

Wafer Assurance

June 12, 2000

THE WORLD LEADER IN DSP AND ANALOG

June 12, 2000

THE WORLD LEADER IN DSP AND ANALOG

TEXAS INSTRUMENTS

TIJ Hiji AVI System

- Automated Wafer Handling Platform. (Load/Unload, Align, Index or Position)
- Accurate repeatability. (Over 90%)
- Speedy inspection time. (Approx. 3 Min./6"Wafer 100% Inspect.)
- Minimum 10um defect size detect.
- Automatic Defect Categorization is future concept.

THE WORLD LEADER IN DSP AND ANALOG

TEXAS INSTRUMENTS

Hiji AVI Current Methodology -1/2

• Capability

Function

- Defect detection 4 ~ 5um or more >90% repeatability.(Use Sub-Pixel test)
- High speed visual inspection. (Approx. 90s /6" W, (225s/6"W with Load/UnLoad))
- Multi dies(x2, x3 or xN) and Sub dies(1/2, 1/3 or 1/N) inspect function.
- 100% chips/Wafer inspection, random sampling inspection with set AQL level.
- Wafer handling size from 5" to 8".
- Motorized optics (SQ 200 mil 500mil).
- Offline ink/Ink Less.
- Defect area and size identification and display.
- Bond Pad mask.
- Auto training and auto start.
 - Automatic lot number recognize by OCR.
 - Device program load for Prober, Mapper or Vision PC.
 - Auto focus, auto light level adjustment.
 - Wafer Alignment, reference chip location recognize.
 - Generate sampling chips for reference chip image shots.

01/18/99 - MM - 03/6232

As of 04/25/00 MM

Texas Instruments

Capability

Programming

- Process area selection or setting
- Minimum detect size setting in process area.
- Ink chip screening or skip function.
- Light level adjustment setting for Inspection VS reference images.
- Set Magnification(SQ 200 mil 500mil).
- Specific area setting with filter(set minimum detect size).
- Set detect sensitivity(Low, Mid, Hi., 1 3 STD DEV.)

Test accuracy technique

- Particle wipe off Filtered Air(N2) blow.
- Retest mode.
- Auto stop for abnormal percentage defect wafer.
- AVI fail location display(Wafer map, Chip map) or defect size,.
- Review defect location and defect identify by color capture screen.

Reporting

- Generate overlay, wafer map. (YAKITORI MAP)
- Auto print report at any lot operation end .

01/18/99 - MM - 03/6232

June 12, 2000

Texas Instruments

Multi chips inspection

Divided chip part Inspection for big chip

Ex.

3x3 chips/1 shot 1/3 chip area/1 shot

- INK chip Elec.fail
- X Visual fail

June 12, 2000

THE WORLD LEADER IN DSP AND ANALOG

Example AVI Lot report

Contraction in the second			Avi Ope. Start		Tue May 02 11:20:46 2000		Avi Ope End		Tue May 02 12:19:49 2000		Operator	
SIV	Avi#	2	Bake Oven Start			Bake Oven End				Operator		
Device :	e: S-104605-T3		W. ID Lot # J-0022156-01-E4		56-01-E4	SMS/370 Lot #			22156		Ink Chk	
	Chip Pass	Chip Fail	AVI			F	Rework					
Wafer #	Quantity	Quantity	Wafer Yield	QC Q'ty	S. Total	VC	QC	S. Total	Yield	Comment	Engineer Sign	
1	700	4	0.994									
2	704	0	1									
3	699	5	0.993									
4	704	0	1									
5	704	0	1									
6	693	11	0.984									
7	704	0	1									
8	704	0	1									
9	683	21	0.97									
10	702	2	0.997									
11	702	2	0.997									
12	704	0	1									
13	704	0	1									
14	704	0	1									
15	703	1	0.999									
16	702	2	0.997									
17	703	1	0.999									
18	703	1	0.999									
19	704	0	1									
20	703	1	0.999									
21	702	2	0.997									
22	703	1	0.999									
23	704	0	1									
24	703	1	0.999									
Total	16841	55	0.997									
T. wafers 24		Adjust Yield :										
Operator Initial and Date												

June 12, 2000

THE WORLD LEADER IN DSP AND ANALOG 20

AVI Report Example Each Wafer

June 12, 2000

THE WORLD LEADER IN DSP AND ANALOG 21

V Texas Instruments

E

ist Forward

AVI Report example Lot Over all (YAKITORI MAP)

June 12, 2000

THE WORLD LEADER IN DSP AND ANALOG 22

ist Forwar

AVI Detect defects example

De focus pattern

Void Pattern

Missing Pattern

Particle

THE WORLD LEADER IN DSP AND ANALOG 23

Fast Forwar

THE WORLD LEADER IN DSP AND ANALOG 24

09/30/98 MM 072/6232

June 12, 2000

THE WORLD LEADER IN DSP AND ANALOG 25

Hiji AVI Future Methodology

- Ink less(Wafer Map) data link
- Electrical ink and data link to data transfer by E- net(No ink operation).
- Networking connection.

Advanced AVI system

- 3 dimension (X,Y or Z) inspect. (Bump, Petal, Nozzle)
- Bond Pad inspection.
- Defect categorize.
- Speed up

Flash shutter camera possibility. Sampling inspection technique.

Single alignment work for Prober and AVI.

- Detection level (More small size defect)

Intelligent AVI System

- Reduce foreign material on wafer or ignore function.
- Auto abnormality defect check.
- Full Automated Work station.(from Wafer ID)
- Auto device program creation.

As of 04/25/00 MM

THE WORLD LEADER IN DSP AND ANALOG

27

COTW

SE

