Implementation of AOI in a High-Volume Manufacturing Environment

Presented By

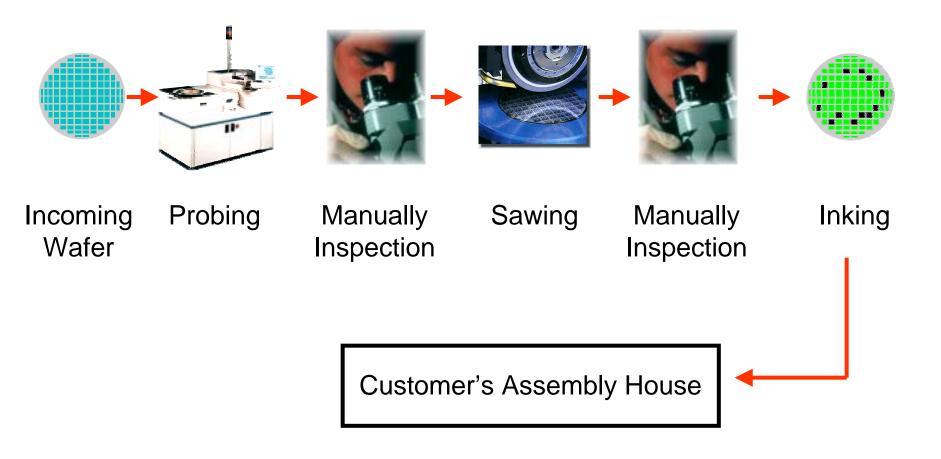
Robert Backie
August Technology Corporation
Southwest Region Sales Manager
June 11, 2000

Overview

- Previous process at this Fab
- What was implemented
- Improvements in process resulting from NSX implementation
- Tremendous benefits resulting from NSX implementation
- Payback \$\$\$
- The improvements possible in your Fab

Customer Fab

- 100mm Fab shipping sawn wafers offshore for assembly
- Utilized manual inspection with paper trails for T&A inspection and tracking of defects
- Wafer maps were not used in the process
 - prober map did not go to assembly, etc...
- Defect categories, location and die count data recorded on paper by operator
- Inking wafers for pick and place



What was wrong?

- Defects not being found during inspection
- Die count variances between customer and foundry assembly site
- Inaccurate recording of defect location and type
 - only as accurate as the operator made it
- No quick feedback to engineering
- Inking
- Major production ramp
 - could not train or hire enough operators to meet ramp

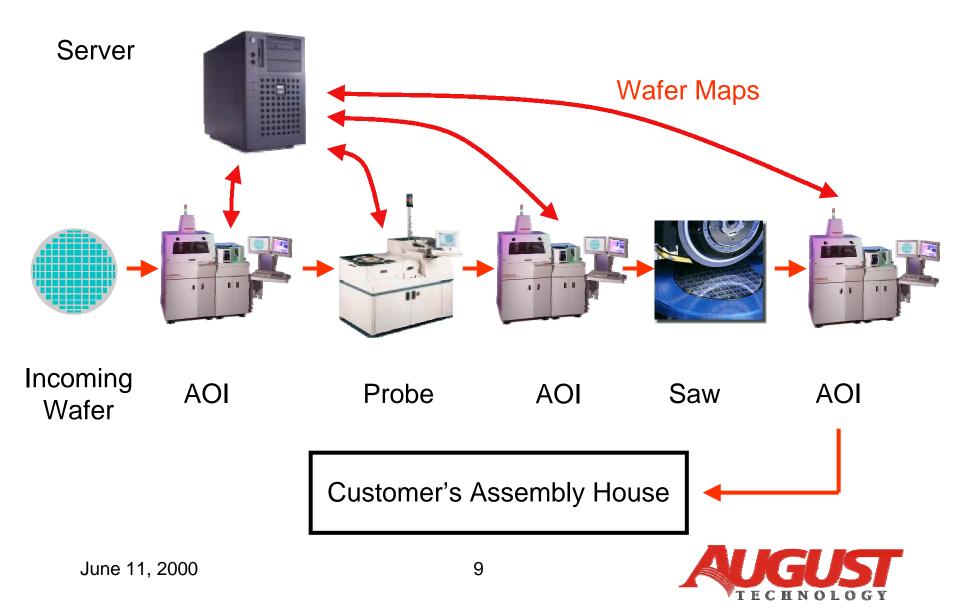
Customer's Previous Process

Solving the problems

- NSX-90 automatic visual inspection
- Electronic wafer maps
- Wafer map server (provided by customer)
- Offline review
- Automatic defect classification

NSX-90 Capabilities Implemented

- Automated Optical Inspection
- Wafer Map Import/Update and Export
- Auto Retrain- automatically modifies inspection recipe as your process changes
- Defect Classification Coding (currently manual)
- Film Frame Handling
- Automated Defect Classification
 - Currently being phased in over next quarter



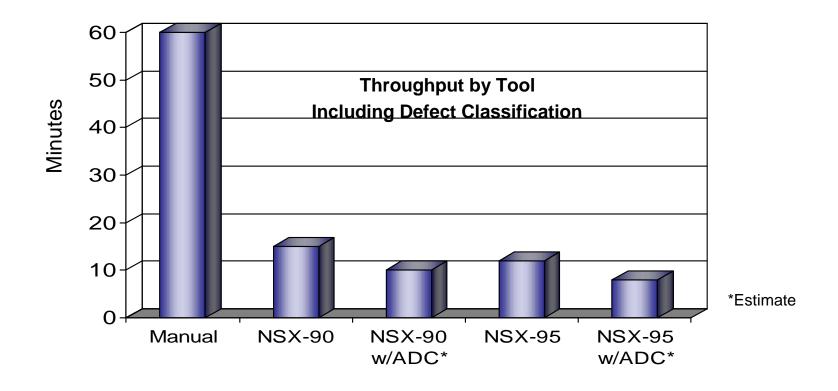
NSX-90 Specifications

- Defect Sensitivity down to 0.5 microns
 - Typically 10 micron in this application
- Repeatability greater than 95%
- Uptime greater than 97%

Enhanced Process

Results

- Elimination of inking
 - Wafers sent to offshore assembly house with electronic wafer maps
- Accurate recording of defects
 - Location
 - Classification
- Wafer maps implemented
- Elimination of manual inspection
- "Real time" review of defects


"Tangible" Benefits

- Inking process step removed
 - Saved time, resources and floor space
 - Eliminated chance of inking wrong die
- Pick and place defects eliminated
 - Locating ink dots not required
 - Wafer maps sent to "end customer"
- Count variance issues eliminated
 - Customer count discrepancies due to operator miscount "We shipped 10k and they received 9.5k?"

Throughput Improvement

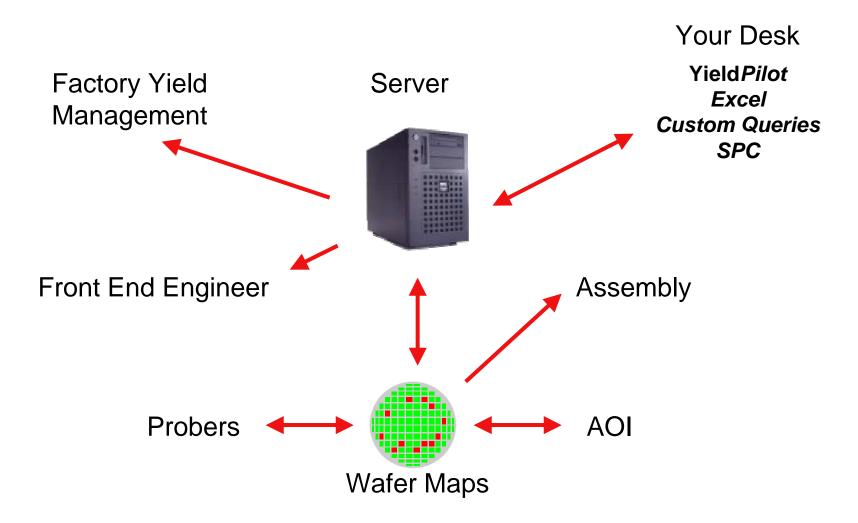
"The NSX-90 alone cut inspection cycle time by a factor of 4 when compared to manual inspection"

Yield Improvement

Added 1.5% to yield numbers

60,000 additional good die per week

Payback in 8 weeks



Intangible Benefits

- Higher end-customer satisfaction due to higher quality of incoming products - making their job easier!
- Reduced human fatigue as operators are not looking through microscopes 8 hours a day
- Ergonomic improvements
- Operators utilized for other tasks- speeds ramp up
- Confidence in inspection –
 "The NSX does not miss defects operators do"
 Quote from manager at customer site

Ultimate Data Distribution - Where

What Data Can We Provide?

- Bump inspection
 - Diameter, height, area, presence, shape, coplanarity,...
- Probe mark
 - Presence, area, boundary intrusion and/or
 - Location on pad (4 dims), area, number of marks
- Active Area
 - Chips, cracks, particles, FM, ...
 - Saw damage

How Much Data Can You Get?

Tons of Data from Probe or Bump Metrology

2400 die, 8 pads, 100% Inspection, 1000 wafer/day

Wafer	230,400	12.8 Mb
Lot	5,760,000	320 Mb
Day	230,400,000	12 Gb

Thinking 300mm?

Count on approximately 41 Mb of data per wafer for full metrology!!!

Implementation of the NSX

Increased Fab productivity and profits

- Improvements in your process through use of accurate and complete data
- Elimination of process steps that are dirty or prone to create defects - i.e.- *Inking*
- Yield improvements- quality of work as well as process improvements
- Throughput, throughput

Quality of work improvements

- Higher quality inspection and accurate data
- Improved job satisfaction Operators do not sit in front of a microscope for 8 hours = less turnover

August Technology

- Founded 1993
- Bloomington, MN
- Cassette and FOUP inspection
- Automated visual inspection
- Bump, probe and sawn wafer inspection
- Over 85 NSX systems installed worldwide
- Wafer, film frame & Auer boat handling

August Technology's Post-Fab

- Whole wafers
 - Active die area, bond pads, bump
- Sawn wafers
 - Chips, FM, cracks, scratches...
- Die in waffle pack or Gel-pak
- YieldPilotTM defect data and process analysis
 - Data server
 - Browser integration
- 300mm inspection ready today!

Contact Information

Robert Backie

Southwest Sales Manager

Phoenix, Arizona

Phone: (480) 778-9694

Email: robert.backie@augusttech.com

August Technology

4900 West 78th Street

Bloomington, MN 55435

Phone: (952) 820-0080 or (612) 820-0080

www.augusttech.com

