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! Thermal Test Chip Experiments
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! Conclusions



3

®®
Southwest Test Workshop  2000
Rahima Mohammed/Jeanette Roberts06/12/2000

Semiconductor Industry 
Power Trends (Seri Lee)
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If trends 
continue, 
device power 
will approach 
250 W and
average 
power 
density will 
approach 
150W/cm2 in 
the next few 
years.
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Power Dissipation Perspective (Seri Lee)

! A goal at wafer sort is to dissipate a large power 
density, while maintaining a relatively cold die 
temperature (Tj).
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Thermal System at Wafer Test
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What is the Tjrise of the
die that is powered?
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! Collect thermal data with a test chip to
– Characterize Tj as a function of different variables
– Quantify Tj improvement caused by changing wafer 

sort  system
– Calibrate thermal simulation models

! Create thermal simulation models to
– Predict Tj of real product prior to first silicon (N+2 

generations)
– Understand Tj sensitivity to different variables 
– Explore potential benefits of changes without 

executing physical measurements

Thermal Solution Approach
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Thermal Test Chip
! The Thermal Test Chip is composed of 4 subdie

– Each subdie contains a heater which can be 
powered independently of the other subdie

– There are 5 temperature sensors, Ti: one in each of 
the four subdie and a fifth in between the subdie

=Temperature 
sensor

T2 Area (cm2)
die 1 1.5
die 2 0.9
die 3 1.1
die 4 0.6
total 4.2

Die 1 Die 2

T1

Die 3 Die 4
T3 T4

T5

T2
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Temperature vs Power: Non-uniform 
Power Density (Thermal Test Chip Data)
! Die temperature depends on local power 

density, not simply total power
Temperature vs Total Power
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Bottom - Chuck at 0 C

Top - Convection to the Ambient Air at 25C  

25 C
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! Simulations were done by using Intel internal tool TPRsim
(Temperature Simulation for Performance and Reliability)

! Provides junction temperature based on estimated 
functional unit blocks power dissipation across the die

! 8 dies surrounding powered die are included as part of 
the computational domain.

Creation of Simulation Models
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All 4 heaters are powered (Low Power)
Example 1:
53 W
15 W/cm2

heater 4
sensor 4

heater 3
sensor 3

7 W
8 W/cm2

17 °C

17 W
28 W/cm2

28 °C

heater 1
sensor 1

heater 2
sensor 2sensor 5

16 W
12 W/cm2

21 °C

13 W
14 W/cm2

20 °C

22 °C

Max Simulated temp = 29.78 C
Difference ~  6 %

(Experimental Measurements)

Simulations

Thermal Characterization Data

x

y
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Temperature in yz plane (constant x)
! Heat transfer in the lateral direction is much less 

significant than in the vertical direction.

Zmin = 880 , Zmax = 884.99Sharp temp gradient between Si
substrate bottom and top of the 
Chuck

Si Substrate

Vacuum

Chuck at 0 C
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y

z
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Example 2:
138 W
37 W/cm2

heater 4
sensor 4heater 3

sensor 3
38 W
44 W/cm2

56 °C

44 W
75W/cm2

78 °C
heater 1
sensor 1 heater 2

sensor 2sensor 5

22 W
16 W/cm2

40 °C

34 W
37 W/cm2

52 °C

53 °C

Max Simulated temp = 74.39 C 

Difference between model and experiment = 4.6%
(Experimental  Measurements)

When all 4 heaters are powered (High Power)

Simulations data from the model 
compares to experiment within 6%.

x

y
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Max Tjrise = 26.825 CMax Tjrise = 22.0105 C

Max Tjrise = 21.03 C Max Tjrise = 18.3 C Max Tjrise = 17.84 C

Max Tjrise = 15.7519 C

Uniform Power Dissipation of 14.5 W/cm^2
Heater 1 (1.5 cm^2) Heater 2 (0.96 cm^2) Heater 3 (1.05 cm^2)

Heater 4 (0.6 cm^2) Heater 2, 3 and 4 (2.7 cm^2) Heater 1, 2, 3 and 4 (4.2 cm^2)

Heaters with same power density acts like a 
common heat source for heat dissipation. 

x
y
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At the same uniform power density, increasing the die size 
increases max Tjrise. 

Effect of Uniform Power Density and Die Size
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Effect of  Average Power Density on Max Tjrise
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Uniform vs. Non-Uniform  Power Dissipation

At the same average power density, max Tjrise for a non-
uniform power density is higher than the uniform power density.
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Effect of Vacuum Thickness on Max Temperature

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5 3
Vacuum Thickness (um)

M
ax

. T
em

p.
 (C

)
53 Watts (All heaters on)
138 Watts(All heaters on)

Effect of Vacuum Thickness on Tj

Decreasing vacuum thickness decreases max Tjrise
keeping the vacuum thermal conductivity constant.
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Effect of Vacuum Thickness and Chuck 
Set-point Temp. on Tj
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Changing the vacuum thickness from 0.1um to 3um and then, 
decreasing the set-point temperature of the chuck top from 0 C 
to -10 C decreases the Tjrise by ~ 9 C.
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Effect of Chuck Set-point Temp. on Max Tjrise
All 4 heaters powered (Low Power)

y = 0.8328x + 29.699

y = 0.9285x + 10.142
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Effect of Chuck Set-point Temp. on Max Tjrise
All 4 heaters powered (High Power)

y = 0.8536x + 74.523

y = 0.9398x + 24.445
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As the set-point temperature decreases, the max Tjrise
decreases at a higher rate.

49.9  C

51.0  C

53.9  C
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! A Thermal Test Chip is being used to collect empirical die temperature 
data under controlled conditions

! Thermal simulation models have been created and correlated to 
experimental data within 6%

! Sensitivity studies have been done assessing effects of
– lowering chuck set-point temp. 
– modulating the thickness of the vacuum conductivity.

! Sharp Temperature gradient between the bottom of the Si substrate and 
the top of the chuck
– Thermal Interface is one of the most critical parameter to determine 
max Tjrise.
– Decreasing thermal interface thickness decreases max Tjrise.

! For the same average power density case, the non-uniform power 
dissipation case has a higher max Tjrise than the uniform power 
dissipation case.  

! Decreasing the set-point temperature of the top of the chuck decreases 
max Tjrise.

Summary and Conclusions
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Next Steps

! Next steps: look at effects of
– alternate thermal interface material
– wafer and prober chuck roughness

! Expected outcome
– better understanding of gaps between future thermal needs 

and solutions
– improved wafer sort thermal solutions
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