Vertical pad deformation during probe **Purpose**

To quantify vertical penetration of aluminum pads as it relates to wire bonding using a cantilever probe card in a manufacturing environment

Page 1

Agenda

- Why we need it
- Surface profiler overview
- Probe recipes/setup
- 3D pad sample contour plots
- Initial results
- Challenges
- Future characterization
- Summary
- Acknowledgements

Why we need it

- Pad damage (excavated area) linked to bonding success
 - Pad thickness decreasing below \approx 1.0 1.2 microns
 - Punch through increases
 - Reduces bonding area on aluminum pad
 - Implies increase in bonding failure rates
 - Pad size shrinking
 - Ratio of pad deformation area to pad area increasing
 - Bonding parameters recipes becoming more critical ball diameter/placement - power- temperature - duration
 - Dielectric material getting softer
 - Alternative contact metals characterization

Typical gold wire ball bond

Profiler specifications

- Manufacturer KLA-TENCORE
- Contact measurement (Stylus contact)
- Automated
- Non destructive could be used as a monitor
- Vertical travel 130 microns
- Resolution $\approx 0.1 1$ Å depends on sample height
- Sampling rate 5 -1000 samples/sec
- Stylus force range 0.05 10mg
- Alignment pattern recognition comparable to a wafer prober
- Repeatability ≈ 25 Å @ 3σ
- Sample size of 60 X 60 microns test time \approx 20 min

Basic principle

^{1.0} micron = 10,000 Å

Bonding fail Bond tear outs Normal bonds Normal failure area

Probe mark

Typical "thick pad" ≈ >1.0 microns

"Thin Pad" below ~ 1.0 micron

Setup

- 1X25 probe card 125 micron pitch
- 5 mil OD from first touch (worst case)
- 4X double Z stroke for all pads (worst case)
- All recipes abrasive cleaned with 3 micron aluminum oxide film
- Pad thickness \approx 1.2 1.4 micron aluminum
- ≈ 80 microns square
- 30° C (ambient) test temperature

Sample plot - probed in same general area

05/19/00

Number of samples <1.2 microns	4
Number of samples <1.0 microns	60
Number of samples < 0.8 microns	189
Number of samples < 0.6 microns	340
Number of samples < 0.4 microns	420
Number of samples <0.2 microns	496

Sample plot - probed in several areas

Passivation opening

Number of samples <1.2 microns	0
Number of samples <1.0 microns	1
Number of samples < 0.8 microns	37
Number of samples <0.6 microns	93
Number of samples <0.4 microns	187
Number of samples <0.2 microns	315

Page 11

Penetration results summary (in mils)

Contact material - aluminum

		Recipe A	Recipe B	Recipe C	Recipe D	Recipe E	Recipe F
	All	1.2dia @	0.8dia @	1.2dia @	0.8dia @	1.2dia @	0.8dia @
Parameter	recipes	1.5g/mil	1.5g/mil	1.0g/mil	1.0g/mil	0.8g/mil	0.8g/mil
Minimum =	0.69	0.80	1.00	1.00	0.69	0.80	0.96
Maximum =	1.37	1.37	1.30	1.14	1.12	1.06	1.12
Average =	1.03	1.11	1.07	1.08	0.92	0.96	1.04

Challenges for pads under 1.0 micron thick

- Reduce pad damage
 - Reduce pad penetration
 - Reduce delta force between probes
 - Reprobe limit reductions
 - Probe tip "conditioning" refinements grit size/frequency
 - Eliminate pad "shaving" removal of pad material
- Geometry under pads design ground rules
- Probe/prober variation reductions XYZ alignment/force/tip diameter
- Metrology to test floor emulation refinements I.e. first to full contact window - make the same

Future characterization

- Elevated temperature effects
- Correlation to bonding failures with additional probe recipes
- Pad excavation volume both above and below pad surface

Summary

- Pad analysis can be used to monitor/correlate bonding failure mechanisms
- Currently a process development tool
 - Can be used as a manufacturing monitor
- Penetration dependent on several factors:
 - Contact force (@ overdrive)
 - Probe tip geometry diameter/shape
 - Cleaning technique and frequency
 - Scrub characteristics
 - Number of probings
 - Probing repeatability (same location ≈ maximum penetration)

Acknowledgements

Barry Buddington - IBM Carlos Strocchia-Rivera - KLA-Tencor Dr. George Walker - IBM Robert Merkling - IBM