

Multi-Square Probe Card

(for Multi-DUT Testing of Peripheral Pad Layout Devices)

Kouichi Eguchi, Micronics Japan Co., Ltd. Mark Godfrey, Everett Charles Technologies

Agenda

- 1. Background of Multi-Square Development
- 2. Market Demand for Multi-Die Testing
- 3. Multi-Square Overview
- 4. Structure
- 5. Probe Needle Specification Review
- 6. Results of Reliability Test
- 7. Summary

Background

- Parallel test at wafer probe lowers test costs through reduced average test time per die.
- This technique is used extensively for memory test due to long test times.
- DRAM die pad patterns (i.e. LOC) and lead counts allow for highly parallel epoxy-cantilever probe cards.
- Logic, mixed-signal, and SOC device pad patterns (peripheral) and lead counts present significant challenges for efficient multidie probing.
- The number of wafer touchdowns and ATE throughput is impacted by the die pattern of multi-DUT probe cards.
- MJC has developed Multi-Square to provide high efficiency die probe patterns for parallel test of peripheral pad ICs.

Background

Typical 4 DUT probe card design

Multi-Die Test

Diagonal 4 DUT

Multi-Square 4 DUT

12% efficiency improvement with 2x2 DUT probe pattern

Diagonal Probe Angle Creates a Finer Needle Pitch Requirement

For a 45° approach angle:

 $b = a / \sqrt{2}$

Example: die pitch (a) of 60 μ m, b = 42 μ m.

Multi-Square 2x2

2x2 parallel DUT probing pattern

Multi-Square 2x2

Multi-Square 2x2

Multi-Square In-line (1x2, 4, or 8)

Multi-Square 1x4

Multi-Square 1x8

Structure

1x4 Stiffener

Probe Specification Comparison

Probe Specification Comparison

Multi-Square vs Diagonal Epoxy-Ring 60μm pitch 585pins SoC

	Multi-Square						
	D	Theta	Ltip	Lb	Dk	Lt	
Layer-1	130um	4	300 um	2200 um	45um	1650um	
Layer-2	130um	4.5	450um	2200 um	55um	1540um	
Layer-3	130um	5	600 um	2200 um	60um	142 0 um	
Layer-4							
	Diagonal Epoxy-Ring						
Layer-1	100um	5	170um	2000 um	30 um	1200um	
Layer-2	100um	7	230 um	2000 um	33um	1200um	
Layer-3	100um	10	290 um	2000 um	37um	1200um	
Layer-4	100um	12	350um	2000 um	40 um	1200um	

FEM analysis

	OD	Force	Scrub
Layer-1	50 um	3.85g	9um
Layer-2	50 um	4.71g	11um
Layer-3	50 um	5.26g	14um

Reliability Test

Positional Accuracy

Reliability is equivalent to conventional epoxy-cantilever

Improved Scrub Margin

Conventional 4DUT

Multi-Square

Scrub margin

Summary

- ✓ Multi-Square probe technology enables 1x2, 4, 8 and 2x2 DUT probing patterns for ICs with pads on all four sides.
- ✓ The efficient probe patterns supported reduce the number of touchdowns required per wafer, increasing ATE throughput.
- ✓ Perpendicular needle approach angles allow fine pitch probing and optimized scrub margin.
- ✓ The technology is compatible with conventional epoxy-cantilever production systems and therefore competitive for cost and schedule.
- ✓ The technology is based on proven cantilever designs and provides the same reliability and performance as conventional epoxy-cantilever technology.

