Verification of Probing Accuracy

Larry Hendler

Hendler Enterprises

Jeff Hintzke

Electroglas Inc.

Agenda

- Background
- Definition of Terms
- Experimental Design
- Results and Analysis
- Summary and Future Evaluations

Verification of Probing Accuracy

Background

Prober Accuracy

- EG 5|300 specifies probing accuracy of $\pm 4 \mu m$
- <u>Prober</u> accuracy commonly refers to stepping accuracy only
- Wafers probed on an EG 5|300 beta prober measured by waferWoRxTM showed probing accuracy of \pm 4.5 μm
- Are the waferWoRx results real or an artifact of the measurement?

Die: Scrub x Position

Die: Scrub y Position

Verification of Prober Accuracy

Definition of Terms

Repeatability and Reproducibility

- Repeatability is variation of multiple measurements
- Reproducibility is the variation of means of multiple iterations of multiple measurements

Repeatability and Reproducibility

Iteration					
measurement	1	2	3		k
1	X _{1,1}	X _{2,1}	X _{3,1}		$X_{k,1}$
2	X _{1,2}	$X_{2,2}$	X _{3,2}		$X_{k,2}$
3	X _{1,3}	$X_{2,3}$	X _{3,3}		$X_{k,3}$
n	$X_{1,n}$	$X_{2,n}$	$X_{3,n}$	•••	$X_{k,n}$
Mean	<u></u>	x 2	s 3		x
Std Dev	s ₁	s ₂	s 3		s_k

• Repeatability = average $(s_1, s_2, s_3, ..., s_k)$

• Reproducibility = std dev $(x_1, x_2, x_3, ..., x_k)$

Gage Capability

• Gage capability is related to measurement error

$$\sigma_{gage}^2 = \sigma_{repeatability}^2 + \sigma_{reproducibility}^2$$

Precision to tolerance ratio

$$\frac{P}{T} = \frac{6\hat{\sigma}_{gage}}{USL - LSL}$$

Probing Accuracy

- The "standard" for accuracy is the pad
- Measure the probe mark position relative to pad center
- How accurate is the measurement tool?

Verification of Prober Accuracy

Experimental Design

Repeatability

• Using a single probed wafer - measure wafer 5 times

Wafer Layout

• Measurements made across entire wafer surface

Pad Layout

• 36 Pads, 6 at each corner, 3 in the middle of each row/column

Reproducibility

Repeat repeatability measurement on 5 consecutive days

Accuracy

- Using 5 wafers with induced scaling error by changing die size (100 ppm = $20 \mu m$)
 - 100 ppm scaling
 - 50 ppm scaling
 - nominal
 - -50 ppm scaling
 - -100 ppm scaling

Verification of Prober Accuracy

Results and Analysis

Normalization of data

- Each pin is potentially different
- Data first needs to be normalized by pad

$$\hat{x}_{pad,i} = x_{pad,i} - \frac{\sum_{j=1}^{3} x_{pad,j}}{5}$$

 Repeatability is calculated from the standard deviation of the normalized pad data

Repeatability of Pad Measurements - x axis

• 36 pads, 681 die, 5 repetitions

Repeatability of pad data x axis

Repeatability of Pad Measurements - y axis

• 36 pads, 681 die, 5 repetitions

Repeatability of Die Measurements - x axis

Repeatability of die data x axis

Repeatability of Die Measurements - y axis

Repeatability of die data y axis

Reproducibility of Pad Measurements - x axis

• Average the 5 repetitions, normalize the data by pad

Reproducibility of pad data x axis

Reproducibility of Pad Measurements - y axis

Reproducibility of Pad Data - y axis

Reproducibility of Die Measurements - x axis

Die reproducibility x axis

Reproducibility of Die Measurements - y axis

Die y reproducibility

Quantitative Evaluation of Repeatability and Reproducibility

		pad	die
Repeatability (3σ)	X	2.02 μm	0.36 μm
	У	2.06 μm	0.33 μm
Reproducibility (3σ)	X	1.3 μm	0.25 μm
	у	1.1 μm	0.19 μm
$\sigma_{ m gage}$	X		0.15 μm
	У		0.13 μm

Evaluation of Precision to Tolerance Ratio

• Similar in concept to process capability (Cp)

$$\sigma_{gage}^2 = \sigma_{repeatability}^2 + \sigma_{reproducibility}^2$$

• For a $\pm 4~\mu m$ probing accuracy, the P/T ratio is approximately 0.1

WaferWoRx P/T Ratio as a function of Probing Specifications

P/T Ratio as a Function of Probing Spec

Prober Accuracy

- Accuracy is evaluated by comparing waferWoRx output for wafers with known stepping errors
- 5 wafers were probed with known scaling errors, created by using wrong die size

Controlled Probing error

• Nominal die size 6.5 x 6.5 mm

Scaling (ppm)	Die size (mm)
-100	6.49935
-50	6.499675
0	6.5
50	6.500325
100	6.50065

Comparing waferWoRx Output

- waferWoRx outputs probing error in μm
- For a 200 mm wafer scaling can be calculated as

$$error(ppm) = \frac{error(\mu m)}{wafer\ diameter(\mu m)} * 10^6$$

• 4 μ m scaling error on a 200 mm wafer =

$$\frac{4}{200,000} \cdot 10^6 = 20 \ ppm$$

Regression Analysis

- We can fit the die data to linear transformations for scaling, rotation, and offset.
- We can then compare waferWoRx accuracy to EG Scaling calculations
- The result is a comparison of known scaling error to measured scaling error, providing an estimate of measurement accuracy

Regression Analysis

Regression analysis based on Wafer Worx Probe mark inspection

Accuracy of the waferWoRx

Accuracy of the waferWoRx

Accuracy Summary

- There is no accuracy standard
- 5% accuracy is reasonable

	Regression	waferWoRx
x axis	1.086	1.048
y axis	1	1.078
mean	1.043	1.063

Verification of Prober Accuracy

Summary and Future Evaluations

Summary Repeatability and Reproducibility

		pad	die
Repeatability (3σ)	X	2.02 μm	0.36 μm
	у	2.06 μm	0.33 μm
Reproducibility (3σ)	X	1.3 μm	0.25 μm
	у	1.1 μm	0.19 μm
$\sigma_{ m gage}$	X		0.15 μm
	у		0.13 μm

Summary Accuracy

Induced scaling:		+100 ppm	+50 ppm	0 ppm	-50 ppm	-100 ppm
	X	16	0.25	11	16.75	28
waferWoRx (µm)	у	13.25	1.5	12	19.25	30.5
waferWoRx	X	80	1	-55	-83	-140
(equivalent ppm)	y	66	7	-60	-96	-152
Hendler Transformation	X	78	19	-59	-90	-139
	у	52	11	-66	-77	-154

- Regression algorithm concurs with waferWoRx
- both are within 5% of imposed scaling error

Summary P/T ratio

- waferWoRx is a viable tool for verifying probing accuracy specified at $\pm 4~\mu m$
- P/T ratio for $\pm 4 \mu m$ probing is 0.1

Future Evaluations

- Future probers will be specified at $\pm 2 \mu m$ accuracy.
- To evaluate and verify probing accuracy an inspection tool will need to achieve $\hat{\sigma}_{gage} = 0.07$

• API has recently provided a software upgrade that is being evaluated for its improvement in gage capability

