How to Reach more than 1 Million Touchdowns per Probe Head when Testing High Current / High Pin Count Microprocessors ???

Jens Kober
AMD Saxony Manufacturing GmbH
Wilschdorfer Landstr. 101
D-01109 Dresden – Germany
Jens.Kober@amd.com

AMD, the AMD Arrow Logo and Combinations thereof are Trademarks of Advanced Micro Devices, Inc.
AGENDA

- Probe Card - Requirements
- Probe Card - Issues Testing on Bumps
- Test Program – Protecting the Probe Card
- Probe Card Maintenance - Cleaning Methods
- Probe Card Tracking System
- Summary
Probe Card - Requirements

• Trends
 – Increasing number of I/O pins
 – Increasing number of power and ground pins
 – Smaller pad pitches
 – Smaller probe diameter
 – Voltages decreasing
 – Current increasing
 – Power is exponentially increasing

• Challenge
 – Keep the total cost of ownership for the probe hardware down and guarantee a high probe card performance all the time!!!
Probe Card – Issues Testing on Bumps

- Probe Needle – Schematic (not to scale)

MLC – Gold pad \[\{ \text{MLC- } C_{\text{res}} \]

Probe – Needle

Bump \[\{ C_{\text{res}} \]
Probe Card – Issues Testing on Bumps

• **Burning Probes**

 – Can be caused by bump material between needles \(\Rightarrow\) shorts between adjacent probes

 ![Image of probes]

 – \(C_{\text{res}}\) increases due to sticky bump material on the needle tip
 \(\Rightarrow\) more current goes through other clean probes with low \(C_{\text{res}}\)

 – MLC-\(C_{\text{res}}\) increases due to pad wear out \(\Rightarrow\) more current goes through other clean probes with low \(C_{\text{res}}\)
• Burning Probes (continued)
 – Asymmetrical power distribution in the power and ground grid due to wafer manufacturing process issues

All this can cause burned probes
How to Determine that there are Burned Probes ???

- Burned probes change their mechanical shape over time due to the applied mechanical force from the prober-chuck when getting in touch with the wafer – high current heats up the probe and the applied contact force can deform the needle.
Probe Card – Issues Testing on Bumps

• How to Determine that there are Burned Probes ??? (contd.)
 – Probe head planarity is a very good indicator ⇒ mechanical and electrical performance of the probes is proportional to the overall probe head planarity
 – Measure the planarity for all signal, power and ground needles off-line at the probe card check station
 – Measure the planarity for all signal pins at every lot start at the prober-tester system ⇒ probe card on-line process control

 Do replace probes in the probe head if they are out of the planarity spec-window !!!

PREVENTIVE PROBE CARD MAINTENANCE
Probe Card – Preventive Maintenance

• Probe Card Maintenance - Plating
 – Mechanical wear-out problem over time
 – Re-plating MLC Gold contacts \Rightarrow reduces MLC-C_{res}

MLC-Gold pad - mechanical wear-out
Probe Card – Preventive Maintenance

• Probe Card Maintenance – Lapping Backside
 – Probe backside lapping ⇒ increases contact area ⇒ reduces MLC-C_{res}

Before-Lapping

After-Lapping
Probe Card – Preventive Maintenance

- **Probe Card Maintenance – Cleaning Probes**
 - Probe tip cleaning / lapping \Rightarrow reduces C_{res}
 - Probe tip cleaning on-line at the prober and off-line

![Before-Cleaning](image1.png) ![After-Cleaning](image2.png)
• **Probe Card**
 – Preventive probe card maintenance improves the performance and life of the probe hardware

Impact Maintenance Methods

- **Start Preventive Maintenance –** Plating, Planarity-Spec
- **Probe Backside Lapping**

Southwest Test Workshop 2002
Test Program - Protecting the Probe Card

- **Test Program - Probe Card Protection Tests**
 - Signal Pin Continuity Tests - OPENS / SHORTS
 - Abort testing when fail
 - Power-Ground Continuity Test
 - Abort testing when fail
 - Power-Supply Shorts Test – current monitoring
 - Abort testing when fail
 - Device - Power-Up-Static Test – power up the part at a low voltage, run a pattern and stop ➞ measure static current
 - Abort testing when fail
 - Current Clamp Alarms – monitor the power supply current while testing the part for each test executed
 - Abort testing when fail – exceeding a defined current limit
Probe Card Tracking System

• Probe Card Tracking - Purpose
 – Efficient system to keep track of all relevant probe card parameters and maintenance events
 • touchdown count
 • maintenance events - MLC re-plating, replacing probes
 • X-Y alignment parameters
 • overall planarity
 • Probe card relevant operation parameters

Tag attached to probe card
RF-Micro-Tag with mounting kit
Probe Card Tracking System

- Probe Card Tracking (continued)
 - Defined limits for all probe card parameters for each probe card type
 - Tracking of maintenance events
Probe Card Tracking System

- Probe Card Tracking (continued)
 - Probe card real time status information available
 - All data will get loaded into a database ⇒ trends and charts can be used to monitor probe card performance ⇒ Statistical Probe Card Process Control possible !!!
Conclusions

• Need to understand the possible root cause of probe burning
• Use the planarity of the probes as a parameter to qualify the probe card quality on the test floor on the test system
• Preventive Maintenance guarantees high quality of the probe card for the entire life in the field
• Probe card protection tests implemented in the test program help to reduce the risk of damaging the probe card while testing
• Probe Card tracking system can be used for statistical process control and monitoring the quality of the probe card
Conclusions

• With the methods and tools in place more than 1.5 million touchdowns per Probe Head and more than 2 million touchdowns per Space Transformer using the same MLC could be achieved – still in use ⇒ numbers will increase even more

TOTAL COST OF OWNERSHIP REDUCED !!!
PERFORMANCE OF THE PROBE CARDS STAY AT A HIGH LEVEL FOR THE ENTIRE LIFE OF THE PROBE HARDWARE !!!