VSCC

Vertical Spring Contact Card for Bump Probing

Patrick Mui, JEM America Corp. (Presenter)
Kaz Okubo, JEM America Corp.
Toshio Kazama, NHK Spring., LTD
Shunsuke Sasaki, NHK Spring Co., LTD.
Yoshio Yamada, NHK Spring Co., LTD
Akira Okuma, NHK International
Outline

- VSCC Concept
- Electrical and Mechanical Data
- Maintenance
- Specifications
- Roadmap
- Summary
Vertical Spring Contact Card

Features:

- For probing area arrays (solder or Cu bumps).
- Mechanically-isolated probes.
- Stable alignment and planarity.
- Replaceable probes and head.
- No floating probes.
- Low, linear probe force.
- Two different tip shapes.
Vertical Spring Contact Card

- Contact to Interposer (Conical Tip)
- Contact to Bump (Flat or pointed Tip)

MLO \ MLC side

SWTW 2002
VSC Configuration (Wire Transformer Type)

- Stiffener
- Wire Transformer
- Board
- Guide Plate
- Spring Pin
VSC Configuration (Space Transformer with MLO/MLC)

- Stiffener
- Board
- Spacer
- MLO / MLC
- Guide Plate
- Spring Pin
- Solder Reflow
Current Rating under room temp

For 150um pitch pin

Rated current under room temperature

SCP10-2510BP

SCP10-2510

- Change rate 80%
- Rated current result: 0.6A

Current [A] @ 60sec loading
Dielectric Breakdown Voltage

Voltage Source

<table>
<thead>
<tr>
<th>Model</th>
<th>Pitch</th>
<th>Voltage Type</th>
<th>Voltage (for 1 minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCP14-3010</td>
<td>0.2mm Pitch</td>
<td>AC</td>
<td>400V</td>
</tr>
<tr>
<td>SCP12-2510</td>
<td>0.175mm Pitch</td>
<td>AC</td>
<td>400V</td>
</tr>
<tr>
<td>SCP10-2510</td>
<td>0.15mm Pitch</td>
<td>AC</td>
<td>300V</td>
</tr>
</tbody>
</table>
Impedance - S_{11} Short Measurement

Smith Chart

- 50M~10.05GHz
- Measured at 0.150mm pitch

SWTW 2002
Inductance
SPICE Equivalent Circuit Model Simulation
by S-NAP Circuit Simulator

DUT = SCP10-2510BP

Pin Inductance

Frequency [GHz]

Inductance L [nH]

0.71nH
Operating Frequency (Insertion Loss)

Insertion Loss
(*S_{21} Through Measurement*)

DUT=SCP10-2510BP

![Graph showing insertion loss vs frequency with specific details on the graph such as frequency in GHz and insertion loss in dB.](image)
Signal Integrity
(TDT Measurement)

Signal Delay (TDT Measured Data)

<table>
<thead>
<tr>
<th>Rise Time [ps]</th>
<th>Source</th>
<th>Response</th>
<th>Delay [ps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>58.6</td>
<td>20.8</td>
</tr>
<tr>
<td>100</td>
<td>108.3</td>
<td>22.6</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>208.4</td>
<td>24.7</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>309.0</td>
<td>26.4</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>406.9</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>506.9</td>
<td>30.0</td>
<td></td>
</tr>
</tbody>
</table>
Force / Resistance - Travel Curve

Average = 3.81gf @170um OD

DC Resistance / Spring Force

SCP10-2510

SWTW 2002
CRES vs Touchdowns

Resistance Measurements

Durable Test Travel: 100?m
Resistance is Measured at 100?m Travel

- MAX
- AVE
- MIN

Number of Touchdowns

Resistance [mΩ]

0 200 400 600 800 1000

100 1,000 10,000 100,000 1,000,000
Solder Bump Deformation After Probing

- Temp.: 85 degree
- O.D.: 170 µm

* Contact Deformation Diameter is measured on Xaxis

Top View of Non-Contact Solder Bump

First contact

3 times contact

6 times contact

SWTW 2002
Ball Deformation Measurement

Temp.: 85 degree TD: 1 time OD: 170um

Before Contact

After Contact

1.77um

35um

SWTW 2002
Probe Alignment at 85°C

Condition
Number of probes: 40pins
Number of DUT: Single

±15μm

† 1000 TD
※ 300K TD
Planarity

Condition
Number of probes: 40pins
Number of DUT: Single

SWTW 2002
Cleaning Procedure

≥ Cleaning Sheet
 Lapping film with 1-µm grain size

≥ Conditions
 ? OD : 100 µm
 ? Wiping action : 150 µm
 ? Number Touchdowns : 5~10
Tip Cleaning

<table>
<thead>
<tr>
<th>Number of Wipes</th>
<th>Initial</th>
<th>3K TDs</th>
<th>5 Times</th>
<th>10 Times</th>
<th>20 Times</th>
<th>30 Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specifications

- **Alignment**: ±15 um
- **Planarity**: ±15 um
- **Minimum Pitch**: 150 um
- **Material**: P7, Steel
- **Tip Diameter**: 75 - 100 um
- **Tip Length**: 250 - 300 ± 20 um
- **Contact Resistance**: less than 1 ohm
- **Contact Force**: 4.1 - 6 g
- **Recommended OD**: 170 - 200 um
- **Maximum Current**: 500 mA
- **Temperature Range**: 25 - 85 °C
Summary

- New solution for area arrays.
- Stable mechanical and electrical performance.
- Very easy to repair.
- Proven in production at multiple sites.