## Celerity Research

Probe and Planarize™ --Optimizing Bump Shape and Height at Probe

Vada Dean and Tom Nguyen Southwest Test Workshop 2004



#### Overview

- The Problem -- Flip Chip Device Reliability
- The Solution -- Probe and Planarize™
- Smart PnP Technology™

## The Problem

Flip Chip Device Reliability

### Flip Chip Device Reliability Issues

- Probe marks damage bumps on the wafer
- Scratched and penetrated bumps trap contamination and flux

- Bump reflow adds yield risk and cost
- Height variation of wafer bumps hinder interconnect formation

## Bump Damage, Contamination and Reflow



- Trapped contaminants and flux weaken flip chip interconnect joints
- Increases variation of bump height





#### REFLOW WAFER TO ELIMINATE SOLDER DAMAGE (260°C)

#### Additional Temp Excursion causes:

- PMOS transistor damage
- Die Yield Loss
- Reduced Final Test Yield
- Additional \$'s for wafer reflow process

#### Typical Bump Height Distribution





Ball Height (microns) Avg. = 118.77, Sigma = 2.10, Number Balls = 5376

### Weak Flip Chip Interconnect



#### Inferior Interconnect and Lack of Wetting:

- Smaller ball with little or no contact after reflow
- Contamination interference

## The Solution

Probe and Planarize™

## Smart PnP Probe™ with Probe and Planarize™





#### <u>Advantages</u>

- Reduced variation of bump height enhances interconnect integrity
- Flat surface eliminates trapped contamination and flux
- Textured surface improves reflow and wetting

Probe and Planarize™ uniformly deforms bumps across the wafer

# Smart PnP Probe™ Improves Bump Height Distribution



#### Probe & Planarize<sup>TM</sup> Results



#### Probe and Planarize™ Improves Reliability



Weak flip chip interconnect joint. Will result in reliability failure of device.

Preferred flip chip interconnect joint structure.

### Smart PnP Probes™ Reliability Study

|                  | Cu Pillar |         | Eutectic |         | High Pb |         |
|------------------|-----------|---------|----------|---------|---------|---------|
|                  | PnP       | Control | PnP      | Control | PnP     | Control |
| MSL L3           | 0/600     | 0/600   | 0/600    | 0/600   | 0/600   | 0/600   |
| TC-B 4500 cycles | 0/100     | 11/100  | 0/100    | 57/100  | 0/100   | 52/100  |
| TC-B 3000 cycles | 0/250     | 8/250   | 0/250    | 19/250  | 0/250   | 11/250  |
| UB-Hast 96 hrs   | 0/150     | 0/150   | 0/150    | 0/150   | 0/150   | 0/150   |
| UB-Hast 168 hrs  | 0/50      | 0/50    | 0/50     | 0/50    | 0/50    | 0/50    |
| HTS 165C 500 hrs | 0/50      | 0/50    | 0/50     | 0/50    | 0/50    | 0/50    |



MTBS Daisy Chain (15 x 15 mm die size, Var. pitch 125–240 $\mu$ ) TF-Polyimide 31 x 31 mm FC-BGA Package ASE-M / MTBS FC-BGA Assembly Process

## Smart PnP Technology™

### Celerity Research Smart PnP Probe™

- Smart PnP Probe™ with unique Probe and Planarize™ technology:
  - High density capability (up to 10000 pins)
  - Fine pitch (60 micron or less)
  - Massively parallel
  - Superior electrical performance
  - The only probe technology that improves the integrity of the flip chip joint interconnect







#### Smart PnP Probes™



- Coplanarity <+/- 2μ.
- Rigid and durable probes

## Smart PnP Probe™ Planarity



240 Probes Monitored -- Camtek Falcon



# Smart Probe Technology™ Utilizes Advanced Design and Simulation

 Electrical parasitics well defined and modeled with EDA tools and simulators

 Lumped elements can be designed into the Smart PnP Probe™



#### PnP Probe™ TDR/TDT

#### DataIn Pins - Diff TDR/TDT response for 25ps input







Output risetime is 27ps Skew is less than 0.25ps

### Smart PnP Probe™ Eye Diagram



- Jitter is less than 1ps
- Eye-closure is 6% (measured 30ps after zero crossing)





#### Smart PnP Probe™ Current Capacity



20 microns overtravel



#### Contact Resistance Performance



240 Probes Monitored



## Smart PnP Probe™ Probes After 500k Touchdowns (no clean)



Smart PnP Probe<sup>™</sup>
Before Touchdown



Smart PnP Probe<sup>™</sup>
After 500K Touchdowns

#### **Conclusions**

- Probe and Planarize™
  - Optimizes Bump Shape and Height at Probe
  - Improves Flip-Chip Device Reliability
- Smart PnP Technology™
  - Provides superior coplanarity
  - Maintains advanced electrical performance throughout life of probe card
  - Provides reproducible low C<sub>res</sub>
  - Enables fine pitch and massive parallel testing

### Acknowledgements

Chainarong Asanasavest

Dave Brown

Randy Chau

Romi Pradhan

- -- Celerity Research Director of Technology
- -- Celerity Research Design Manager
- -- Celerity Research Application Engineer
- -- Accretech Product Manager

This presentation would not have been possible without the support and equipment provided by Accretech, Camtek, and Gigatest









