ti

Eliminating Dielectric Cracking of Cu/Low-k Devices During Cantilever Probing

D. Stillman and C.D Hartfield Texas Instruments, Dallas, TX

June 6th 2005

Objective
Background
Approach
Needle Modification
Test Results
Summary

- Eliminate cracking of low-k dielectric material induced by cantilever probing
- Show the effects of cantilever needles on low-k material
- Review the features of the cantilever needle that effect low-k dielectric cracking
- Cantilever needle design alteration needed to eliminate dielectric cracking

Background

- Probe –induced cracking of devices is an ongoing test industry issue. Damage to Cu/Low-k devices during fabrication, probe, and assembly is a long-term reliability concern
 - Low-k materials tend to have lower modulus and hardness
 - Fracture toughness reduced; difficult to measure
- Low-k dielectrics are in a class of their own when it comes to fracture toughness and Youngs Modulus
 - low modulus of elasticity and a extremely small fracture toughness equals a high probability of cracking.
- TI: Metal structures changed and probing refined to eliminate probe cracks in look ahead builds, allowing successful qualification and ramp (unpublished information, ~1999).
 - Chartered: Probe-induced IMD cracks cause infant mortality failures having high resistance (ISTFA 2003).
- IBM: probe damage occurs with SiLKlow-k dielectric (ISTFA 2001)
 - O "The intrinsic inability to control tip contact forces with conventional tungsten tip probing techniques results in damage to the Cu interconnects and deformation of the underlying low k dielectric film."

Background

- Experiments show that probe force is not the only leading factor causing cracking.
 - \bigcirc Two needles
 - O Identical force
 - Different scrubs and cracks results

Hartfield et al., SWTW 2003 Hartfield et al., ITSFA 2003 Hartfield et al., SWTW 2004

Cracking as a function of touchdowns

Stillman et al.

Background

- BCF was a key factor in cracking in past technology nodes.
- Different vendors showing different results in scrub marks and cracking.
- Scrub mark shape correlates to cracking of low-k dielectrics.
- Scrub shape correlates with probe tier.
 - Majority of dielectric cracking is induced by needles on tiers one and three on a 6 tier quad site shelf probe card

Horse shoe crab scrub marks- no cracking

Comet scrub marks- cracking

Probe

Inspection/Documentation

Full flow wafer + Probe card

Probe multiple touchdown numbers Photos

- Incoming scrub marks
- Post wafer saw
- •Post wet etch Counting
- Cracked pads
- •Repeating pins
- •Needle number, site and tier.

Cracks found during the counting process result in a failed probe card

Approach Probing

Probing Settings

•Full production over-travel

•Cleaning of the probe needles at the beginning of the wafer only

Approach Inspection/Documentation

Page 9

Needle Modification Probing Features

Needle Modification Tier and Shelf Design

Rigid needles = Short beam length + Short tip lengths + Short taper lengths = Cracking

Tier 1 = Tier 3 = Short beam length + Short tip lengths + Short taper lengths = Rigid needles = Cracking

Needle Modification

 Worked with different probe card suppliers

All suppliers have different: ONeedle geometries OBuild practices OCracking results

Needle Modification

Incoming needles

Needle Modification Rigid Needles vs. Flexible Needles

Test Results

Chart of improvement

	Old Needle Design		Low Force Needle		New Needle Design	
	Percent	Cracking	Percent	Cracking	Percent	Cracking
Vendor	Load	(TD)	Load	(TD)	Load	(TD)
Α	100	6x	57	6x	62	7x
В	100	6x			68	7x
С	100	3x	57	3x	80	8x
D	100	5x			80	8x
Ē	100	4x			80	7x
F	100	4x			62	8x

The new needle design causes a 20% - 40% reduction in the needle force

Stillman et al.

<u>Test Results</u> Vendor E result

SWTW June 6th 2005 Page 17 Stillman et al.

<u>Test Results</u> Contact Resistance

Page 18

- Rigidity of the probe needles cause deep scrub marks and cracking of low-k dielectrics
- Tier 1 and tier 3 are the most rigid needles in a 6 tier quad site design
- Increasing the Beam, Tip and Taper length of the probe needles reduces the severity of scrub damage and ultimately eliminates cracking of the low-k dielectrics

Acknowledgments

• All of the probe card suppliers ○ For working extremely hard with Texas Instruments TI Management OFor Providing the support and resources to isolate the root cause of probe induced cracking Neal Okerblom (TI) ○ For prober support Nancy Ota (TI) ○ For de-processing support

Hartfield et al., "A Novel In-Situ Methodology to Characterize Bond Pad Dielectric Mechanical Behavior During Wafer Level Test", Southwest Test Workshop, 2003.

Hartfield et al., "Evaluation of Cantilever Probe-Induced Dielectric Cracks in Cu/Low-k Devices", Southwest Test Workshop, 2004.