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Toward “"ZERO DEFECTS”

There is an established relationship between

Burn-In failures/ELFs and abnormal devices
in the "Bin 1" population

Quality is inversely proportional to variance

Eliminating classified outlier devices from the Bin 1
population will reduce the number of early life failures
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Overview

Outlier Detection Technology
o Confirmed Parametric and Spatial Outliers

o Automatic Ink Map Update
e Recipe driven merge

e Yield Impact Analysis

e In-Line Automated System
e Functional building blocks

e Summary
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Outlier Detection Coverage

"PAT"” (AEC-0001—-Rev C) Addresses:
Gaussian Data Distributions

Comprehensive Outlier Detection Addresses:
Any Type of Data Distributions
Wafer to Wafer Population Shifts
Test Limit Dependencies (Existence, Location, Cp, Cpk)
Asymmetric thresholds for control limits
Classification of detected outliers
In Addition to Parametric Outlier Detection.
Advanced Spatial Outlier Detection Methodologies
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Parametric Outlier
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Data Population Distributions

Dynamic determination of
data distribution per wafer/per
test based upon skewness,
kurtosis and other estimation
techniques

Classification Fail Bin
Specification Fail Bin

Automatic selection of Ll e |
qualified detection algorithm or o no— ——
algorithms for the respective g Z :
distribution analysis

Differentiate between

Population and Test Limit L.l
Outliers, use asymmetric
scaling factors T o &
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Dynamic Outlier Algorithm Selection

Algorithms applied to test/data populations
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Automatic Outlier Detection Operation

e "On The Fly” Outlier Detection Algorithm
Selection defined by Data Population
Distribution and Test Limits

T 1400 | Rule3 | - | - | USED | USED | USED | USED [ 1
T 1312 | Ruet | - | - | - | - | USED [useD | = 1
T 1311 | Ruet | - | - | - | - | USED [ UseD [ = 1 =
T 1116 | Rule3 | - | - | USED | USED | USED [ USED | 0
T 1115 | Rue7 | - JUSeD | - | - fuseb [ - | = 2
T 1100 | Rule5 | USED | - | wuwseD | - | - [ - | = 2

7515 | Ruet | - | - | - | - | USED [UseD | = 2
7514 | Ruet | - | - | - | - | USED [useD | = 1
T59 | Rue3 | - | - | USED | USED | USED [ USED | 0
T58 | Rue3 | - | - | USED | USED | USED [ USED | 1
T17 | Rue8 | - | - | USeD | useb | - [ - [ = 1
T16 | Rue3 | - | - | USED | USED | USED [ USED | 3
T15 | RWes| - | - | - | - [ - ] - | 0
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Parametric Outlier Classifications

o Distribution Outliers vs. Test Outliers
— Conventional techniques are distribution centric

— Test limits provide additional insight that can
improve outlier classification

e Asymmetric thresholds for parametric outlier
analysis

e Qutlier Magnitudes
— Large, Medium, Small, Tiny
e QOutlier Device Classification
— Multiple parametric anomalies for the same device
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Parametric Outlier Classifications

(UTLp.cos

(LTLYy.001 .
(LiCata

A = Test Limit Failure / Outlier
= Bin 1 Outlier
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Outlier Classification Merge
Recipe Managed Rules

e QOutlier Weighting — Magnitude and Frequency
e Specific Tests may be considered uniquely

Example Classification Rules:
CRITICAL="L >0or M > 4"
MARGINAL="M >2 or S > 10"

Test 1 Test 3

(oevice
o) T | M|t

| #T | #S | #M | #L

Results:

e Device 10,11 is classified as CRITICAL = Bin 20
e Device 10,12 is classified as MARGINAL = Bin 10
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Spatial Outlier Detection

Recipe-driven downgrading of devices based
on proximity to Failing and Outlier Devices

Measurably Reduce Full/-Wafer Scrap and
ensure reliability of "Bin 1" die

Configurable and flexible methods controlled
via user-defined recipes

User-defined sensitivity and proximity
techniques driven by process, product, and
quality policy
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Geographic Analysis Application

Proximity
weighting
with
smoothing

Parametric
Outlier Devices
comprehended

in Spatial
Analysis
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Guardbanding
with smoothing

Good Die in a Bad
Neighborhood
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Stepper and/or Repeating Pattern
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Wafer Data Merge Process

Recipe Managed Rules

e Parametric outlier classification results and
spatial analysis map(s)

e Merge all datasets together based on user
defined merge priority
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Wafer Merge Results
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What is the Impact to Yield ?

94.00%

Yield Impact
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Functional Building Blocks

User-defined Recipe

Parametric Spatial Updated

Outlier Outlier Ink
Analysis Analysis

Map

Automated Analysis

Obijectives:

. In-Line

Automated

* 100% of the Data is Analyzed
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Menu Driven Recipe Management Approach
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Toward Zero Defect Production

Identification and rules-based classification of
Parametric Outliers in any type of test data

distribution

Rules-based Spatial Outlier detection
Maximum outlier detection coverage
Rules-based classification and merge

identifying “Qualifiec
Managed Yield vs. D
100% data analysis

" Device Qutliers
PPM

by a fully integrated and

automated in-line production system
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