OPTIMUM Wafer to Thermal Chuck INTERFACE

By Harald Ibele Maccs LLC Klemens Reitinger ERS GmbH

Outline

- Challenge
- Mission
- Theoretical Background
- Methods used in the past and their limitations
- Current Capabilities
- Summary
- Alternate Future Trends
- Reference

The Challenge

- High Power measurements with the goal of keeping Chip temperature constant
- The developed heat needs to be dissipated instantaneously for accurate measurements and to prevent damage to the structures involved
- Thermal Resistance between Wafer and Chuck needs to be kept at a minimum

The Mission

Theoretical Background (from a chuck manufacturers perspective)

- For accurate measurements the Thermal Resistance value between Wafer and Chuck needs to be: k=0 °C/W.
- This is not attainable, therefore a Rt value k<0.1 °C/W is desirable
- Main Influence on Thermal Resistance IS Surface Quality of BOTH Wafer Backside and Chuck Top
- HIGH POWER applications need the best surface quality!

Rt = Rtw + Rtc

Calculating Chip Temperature from Applied Power

Therefore: Chip Temperature (T1) = Chuck Temperature (T2) + (Chip Power X Thermal Resistance k)

Other Influences:

- Probecard also dissipates power
- Chip Size and Power input are related
- Vacuum is generally a negative though necessary influence – best results have been obtained with a probe force of >3kg per 10mm x 10mm
- Formula is based on ideal conditions Environment matters

Keeping Chip Temperature Constant

a) Bad Thermal Contact (k=1) Very low Chuck temperature is necessary

b) Good Thermal Contact (k<0.1) Higher Chuck temperature is possible

Typical values:

Standard Wafer k~0.3 °C/WERS Chuckk~0.08 °C/W

Thermal resistance	Chip temperature	at P100W	at P 200W
factor k*	constant T1	Chucktemp T2	Chucktemp T2
0.1	+25°C	+15°C	+5°C
0.3	+25°C	-5°C	-35°C
0.5	+25°C	-25°C	-75°C

*Chip size = constant

Wafer Backside Surface Influence

Standard Chuck Design

High Power Chuck Design

Influence of Chip Size with Constant Surface Thermal Quality

typical values for total power input at different test temperatures and the resulting chip temperatures

Chip ** Temp [℃]	Chip Power [W]	Probecar d* Power [W]	CHUCK Total Power [W]	CHUCK Temp [℃]	dT[°C] Chip/Chu k	total k Chip [K/W]
40	200	-7!	193	35.0	7.0	0.035
25	200	0	200	14.5	10.5	0.053
10	200	7	207	-4.5	14.5	0.075
0	200	12	212	-17.0	17.0	0.085
-10	200	17	217	-30.0	20.0	0.100
-20	200	21	221	-42.0	22.0	0.110
-30	200	26	226	-55.0	25.0	0.125

K dT Chip/Chuck to Chuck power = constant

Ancient Solutions for low Rt

- Have shown an improvement in decreasing the thermal resistance but at the same time added another layer of resistance between Chuck top and Wafer (though preferable over a void)
- Media included helium, liquids and similar
- Rtw + (Rtm) + Rtc = Rt
- This is not the ideal way to increase conductivity / decrease resistance

Helium

 Added in the cavity between Chuck and wafer has shown a 20% increase in conductivity

Picture Source: Thermo Chuck by Temptronic. "Scotty, I need more Power" Dale Slaby, Cray Research 9/12/1998

SWTW 1997 "Wafer Temperature Control for Testing High

Power Chips: Measured Thermal Performance" by Dave Gardell, IBM Corp, 963G

WE PROPOSE:

 HIGH POWER applications NEED the BEST surface quality!

ERS Test Chip

10mm x 10mm subdivided in 9 segments

Individual Thermal load resistors and diodes for temperature sensing

Segments can be queried individually for measuring temperature on the outside and center of chip

ERS Test Chip

Calculating Chip Temperature

- Determine resistance of the temperature dependent Rt Chip.
- Cross reference Rt Chip with temperature value
- Determine RTchip through 2-point procedure
- P1: RTchip absolute $0 = -273, 16^{\circ}C = 0\Omega = R0$
- P2: RTchip with ambient* T2= 23,48°C = 44287Ω

*(arrived at on a copper block with temperature sensor at room temperature =T2)

In Kelvin

P1:
$$T_0 = -273,16K$$

 $R_0 = 0 \Omega$

P2:
$$T_{Rt} = 296,48K$$

 $R_t = 44287 \Omega$

a
$$=\frac{\Delta R}{\Delta T} = \frac{R_0 - R_t}{T_0 - T_{Rt}} = \frac{0 - 44287}{0 - 296,48} = 149,2954$$

In Degree Celsius

 $R_{T0^{\circ}C} = 0^{\circ}C - a * T_0$

 $R_{T0^{\circ}C} = 0 - 149,2954 * -273,16 = 40781,53 \Omega$ bei 0°C

$$\begin{split} R_{TChip} & \text{bei } 0^\circ \text{C} = 40781,53 \ \Omega = R_{T0} \\ T_{Chip} &= (R_{Chip} - R_{T0}) \ / \ a \\ \\ & \text{Test P1:} \\ T_{Chip} &= (44287 - 40781,53) \ / \ 149,2954 = 23,48^\circ \text{C} \end{split}$$

Measurements with ERS Test Chip 10mm x 10mm

- Measured Chip Temperature no Power:
 0Watt T1 = 25,5°C (=Chuck temperature)
- Measure Chip Temperature with Power
 60Watt T1 = 47,1°C
- $\Delta t = 47,1^{\circ}C 25,5^{\circ}C = 21,6^{\circ}C$
- K = Δt /W = 21,6°C / 60W = 0,36 °C/W for a Chip with an area of 100mm²
- Chip Powered Square Area 10mm

K=0,36 °C/W

Measurement on 300mm Wafer, Chip Size 12.25mm x 18.05mm

- Measured Chip Temperature no Power: 0Watt T1 = 25,5°C
- Measured Chip Temperated with Power: 54,6Watt T1 = 31,6°C
- $\Delta t = 31,6^{\circ}C 25,5^{\circ}C = 6,1^{\circ}C$
- K = Δt /W = 6,1°C / 54,6W = 0,11 °C/W
 for a Chip with an area of 221 mm²
- Chip Powered Square Area 14,8 mm

K=0,11 °C/W

SWTW 2005 Harald Ibele Maccs, LLC Charlotte/NC

Maccs, LLC Charlotte/NC

Chip size 300mm² = K<0.1 °C/W

- Chip Size 17mm x 20mm (320mm²)
- Chip powered square area 17.8 mm
 K= 0.07 °C/W

Current Capabilities

Summary

- Rt = Rtw + Rtc
- (T1-T2) / Power = k (°C/W)
- T1 = T2 + (Power x k)
- Good Thermal Contact is k < 0.1 °C/W
- Chuck interior needs to be laid out for best Heat dissipation
- SMOOTH SURFACES (of Wafer and Chuck) ARE PARAMOUNT!

Alternate Future Trends:

References:

Page 14: Temptronic Thermo Chuck "Scotty I need more Power" by Dale Slaby, Cray Research 9/12/1998

Page 15: SWTW 1997 "Wafer Temperature Control for High Power Chips: Measured Thermal Performance" by Dave Gardell, IBM Corp, 963G

Page 27: Test data by VSLC Test Development Laboratory, IBM Boeblingen / Schoenaich 11/22/2004