Development of a Next Generation Probe Card Maintenance Process for Wafer Sort

Zhiming Mei
Intel Corporation
SWTW June 2006
Outline

- Current PCM state in high volume manufacturing
- Establish successful PCM process
 - Tool capability and risks
 - Performance Evaluation Methodology
 - Established process control systems
- The challenge: Correlation between sort and PCM results on probe cards
- Summary/key message
Current PCM state in high volume manufacturing (HVM)

- Metrology tool usage is no longer like a lab tool as in validation sites:
 - Now a standard part of HVM
 - Goal is quick determination as to whether the probecard was the source of failure in a sort module
 - 24x7 utilization, high volume of probecards
 - Large user base with minimum tool operation knowledge
 - Multiple toolsets
 - Metrology needs to encompass increasing complexity
 - Multiple products
 - More complex sort failures due to increased test capability
Current state in high volume manufacturing (HVM) cont.

- Current PCM equipment has limited Process Control Capability
 - Access to several databases is required to get basic information
 - Wafer test (Sort) failure details
 - Metrology data history
 - Analysis of probe marks on wafer

- Goal: Develop a Probe Card Metrology (PCM) Process that meets HVM needs in both quality and throughput
Establishing successful PCM

- Develop critical capabilities to meet technology needs over multiple generations
- Evaluate performance
 - Engineering/enabling
 - Robust for Manufacturing
- Ensure Process Control Capability
Develop critical capability

- Determine which metrology capabilities are essential to sort and probing process to ensure you get the desired result → detect sort failures
- Evaluate risk of not copying sort conditions exactly
 - Ex: Are their unique probecard failures at elevated temperatures that will be missed in PCM analysis?
Establishing successful PCM

- Determine critical technology needs over multiple generations
- Evaluate performance
 - Engineering/enabling
 - Robust for Manufacturing
- Ensure Process Control Capability
Metrology tool performance evaluation

- Evaluation includes multiple phases:
 - Early engineering capability
 - some instability and manual assists
 - Establishing initial capability
 - Technology and transfer certifications
 - Higher volumes \rightarrow longer time scale
 - Evaluation of HVM variances
 - Tool fleet variation
 - Site to site variation
 - Probe card
 - Operator
 - Within tool health over time, etc.

Expected Outcome: A “Certified” process that is HVM capable and robust w/o process tweaks.
Metrology tool performance evaluation

- Suggested Tool reliability indicators
 - Diagnostics and calibration: enhance self-diag and calibration to *minimize human error*
 - Repair and maintenance: easy repair and maintenance to *minimize downtime and cost*
 - Failure frequency and pareto: focus on high failure modes to *maximize tool availability*
 - Training and response flow chart: focus on essential training to *minimize impact to ops*

Easy to decide, fix and eliminate tool related issues
Establishing successful PCM

- Determine critical technology needs over multiple generations
- Evaluate performance
 - Engineering/enabling
 - Robust for Manufacturing
- Ensure Process Control Capability
Process control systems

- Clear indication a probe card is out of control
- Process control ensures both tool and probe card fleet are in control
Example: Measuring control card across metrology fleet

SPC card monitors metrology tool fleet over time, ensure tool fleet stable and matched
Metrology goal

- Quick determination as to whether the probe card was the source of failure in a sort module

- Key enabler/Key challenge: Establishing a strong correlation between metrology results and results in the sort module
Correlation of metrology to wafer sort

- Correlation is essential but not straightforward
 - many factors are different → introduce metrology detectable signals for sort failures
 - Pass-Pass: a probe card that passes metrology should pass a sort setup
 - Fail-Fail: a probe card related sort failure should not pass relevant metrology tests
 - Currently, correlation studies require manual access to various data sources.
Correlation of metrology to wafer sort

- Correlation evaluation is difficult to track
 - PCM only addresses failures related to the probe card.
 - Excluded from analysis: tester, prober, test program and marginality in incoming Silicon or product design.
 - Additional variability due to probe card fleet.
 - Data are located at various sources: metrology, probe card inventory database, sort failures
- Even so, limited results to date show promise
 - Case study results
Case 1

- Bin99 sort failures: over 3 months, 6 cards have multiple Bin99 failures cross multiple testers
 - Bin99 is a misc sort failure and could be product/tester dependent
 - Drilled down the failure message inside log files => “power supply sense open”
 - Probe cards passed metrology tool on power sense lines per design
 - Mis-correlation?
 - No. Further investigation showed the sense lines caused B99 were not tested on metrology tool, probe card design didn’t include them (they are part of possible sense line pins).
 - No further such failures after these pins were added into the test

- An integrated database with sort and metrology data will help to track and flag such mis-correlation events easily, then to enable engineering to close gaps
Case 2

- Two test channels open at sort but passed on metrology tool
 - Two channels measured ~2X higher than the majority at sort

Metrology and sort are not measuring the same thing, Need to improve test methods to be able to compare
Case 3

- Ch320 failed for high cres (Bin30) on one card, but other cards are ok
- Probecard passed metrology tests

Probecard variation can cause mis-correlation, need to minimize such variation

Metrology show ch 320 has much higher path resistance

However ch 320 on another card has “normal” path resistance
Case 4

- Bin15 sort failure on part of wafer on probecard #1
 - Resort wafer with a different probecard, no Bin15
 - Probecard #1 passed all metrology tests

- Further investigation show this is a combination of variations from probecard, bump height and probing process.

- Easy access to various data sources can improve/optimize our process: bump inspection data, probecards data and sort data.
Key messages

- Establish correlation to sort failures
 - Features enable test methods optimization
 - Automation solution for easy data access and analysis along with sort data

- Develop critical capability
 - Provide modular options to suit various customer's needs
 - Low cost by remove non-critical components

- Improve tool reliability
 - Minimize tool related issues on testing and results (self checks for setup, system key components etc.)
 - Minimize human error (self-diag & calibration, easy repair etc.)

- HVM friendly features to improve the process
 - Minimize human intervention needed for HVM variance
 - Minimize tool to tool variation allow process transfer