Highly Efficient DPPM Improvement Programs Depend on Pre-production and Post-probe Data Analysis

> Michael Scott, Greg LaBonte Test Advantage Inc. June 14, 2006

Toward Zero Defects

- There is an established relationship between Burn-In failures/ELFs and abnormal devices in the "Bin 1" population
- Quality is inversely proportional to "variance"
 - Eliminating classified outlier devices from the Bin 1 population will reduce the number of early life failures

But.....

The Testing environment itself can be a source of "RISK" to measuring actual device "variance"

Agenda/Overview

The Keys to Enabling Accurate, Comprehensive, and Efficient DPPM Reduction

- Parametric and spatial outlier detection
- Quality of measured data
- Pre-production test program development
- Leverage of "hidden" information contained within the test data
- Post-probe outlier detection optimization
- Summary

Parametric Outlier

- Test failures gross outlier removal
- Parametric Outliers

 atypical results in Bin 1 population

Parametric Outlier Classifications

Bin 1 Outlier

Michael Scott @ SWTW 2006

06/14/06

Device Classification

Rules Managed via Recipe

- Outlier Device Classification using Magnitude and Frequency
- Specific Tests may be considered uniquely

Example Classification Rule:

• Critical Device Outlier = L > 0 or M > 2 or S > 3 = Bin 25

A device may exhibit a smaller magnitude of variance but have this occurrence across multiple tests confirming a quality risk device

Spatial Outliers

Highly Efficient DPPM Improvement Programs Depend on Pre-production and Post-probe Data Analysis

> Test Data Quality is a Key Requirement !

Data analysis automation Speeds time to market, focusing Engineering talent on Problem resolution versus manually grinding through data

STANDARDIZED Repeatable, automated, and objective analysis Recommendations Report

> Corrective Actions Test Removal Candidates Test Sampling Candidates

And successive statements															101
Contigues															
2027-Doc red Publication #	5			241	114	(##)	1000	#U32U4		74+		341		a	
T THUR BAR-HARDS				Ĩ	nta.	(10)	-	MACHER		104		1		10	
A.D-TERTER				JWCLER DWCLER		104	-	10.00.000		-				8/	
Circurente		+				204	-	M. 81, 18, P				18.			
TINKS-A		4		11e	11.8	200	1	POR DECKOR		-				H .	
1283+75		*	- 28043.4		112.1	348.	1400.	41.011		1 mar 1		31		18	
		÷			198.0	383	-	HELPELTEL.						18	
				20100.0		383	HUPONIA			-		(4)		18	
		÷				400	100	144,10,00,000		Agentie		(8)		10	
		÷	10130.0		38.8	434	100							18	
		+		120001.0		439	100,41,00			(********				*	
		÷	6 1		1000	844	140.	PROJECTS.		-		18		1	
		*		120081.0		473	100	26,36						2	
		0		12	198.8	404	1400,010,110		Astron		(8		18		
		T.			Dataset)	West	- 14	aver that the	100	-	Inter loate	Mount.		-	100
			3		ARK	4.752022218		2.652999999	11.6	F940972	-1.342300021	348	. 41	111040119	8.38
					P.#E	4112022118		2.00200000		******	1342308521	128	41	4.1.11941.018	
					Circula	Tevin									
					403										_
				110	disumper .	Testinger	1440	hete		dicts in	austrationalistics.	Parment Con	10	Sumple Con	1
		*		120	112.0	400	3466	84,720		(Harrison)				3	
		*]ü	1.00.0	122	100	CHURCH		(Parried				8	
		*			1114	325	1410,103,0010,000		-	(Farmer)					
			Parameters Taxa			Tem									
	14		Storage			101,009,00	14,00	52,0091,0945,1	144.1	847, 8940.	1947, 1914, 1941.		(71, 94)	8, 4708, 982	6,4547
			14	Ced.		1915, 2598L 2	1015, 151001, 34105, 320, 4501, 8055, 25100, 8067, 120006, 81, 12045, 1443, 4308, 1408, 17, 4308, 34581, 3821, 11								
			Contachanter			anden berten									

Recommendations Verification Tools

Determination of Poor Test Data "Quality"

- Automatically determine key elements contributing to Poor Quality Data
 - Multimodal distributions due to multisite variation
 - Clamping or poor resolution due to incorrect force/measurement ranges
 - Tester alarms due to incorrect configuration
 - Invalid test limits can allow bad devices to pollute the good device statistics
 - Etc
- Provide explicit feedback of *Corrective Actions*

Multisite Variation

Test Inde	×	Test Number		Test Name		Туре	Recom	mendation	Infor	rmatior	٦										Execut	ed F	fails	Unique Count	1	UTL
165	. 1	165		Test_00	165	Р	Correc	tive	Multis	siteVar	riation	Ŀ									652	0)	647		1.500e-06
	Data	Set	Num	Cpk		Pci	Mir	imum	Q1		Q2		Mea	n	Q3		Max	imum	STD	Dev	IQR		Skev	vness	Kurt	osis L
ф-	RAW	_ALL	650.0) 4.0	67	7.740) 4.7	'80e-07	4.921	1e-07	5.307	7e-07	5.18	1e-07	5.431	1e-07	5.60	05e-07	2.60)8e-08	5.094e	-08	-0.0	08998	-1.8	:57 -
		Section	1	Vum	Cpk	. 1	Pci	Minimum	n	Q1		Q2		Mean		Q3		Maximum	۱Ű	STD Dev	/ 10	2R		Skewness		Kurtosis
		SITE_1	_0 :	322.0	19.8	33 2	20.24	4.780e-	07 ·	4.8896	e-07	4.9216	e-07	4.9236	e-07	4.9576	e-07	5.069e-0)7	4.915e-	09 6.	784e	e-09	0.1751		0.2142
		SITE_1	1 :	328.0	21.3	76 2	21.53	5.285e-	07 !	5.3986	e-07 !	5.4306	e-07	5.4346	e-07 !	5.471	e-07	5.605e-0)7	5.260e-	09 7.	254e	e-09	0.06589		-0.02661
	Data	Set	Num	Cpk		Pci	Mir	iimum	Q1		Q2		Mea	n	Q3		Max	imum	STD	Dev	IQR		Skev	vness	Kurt	osis L
₫-	PURE	E_ALL	650.0) 4.0	67	7.740) 4.7	'80e-07	4.921	1e-07	5.307	7e-07	5.18	1e-07	5.431	1e-07	5.60	05e-07	2.60)8e-08	5.094e	-08	-0.0	08998	-1.8	:57 -

A measurement offset between two test sites has resulted in the detection of multisite variation, which requires engineering analysis into a possible hardware, software or calibration issue.

Michael Scott @ SWTW 2006

Poor Measurement Resolution

A low number of unique values, which result in a discontinuous (categorical) distribution histogram, may be as a result of a measurement resolution problem.

Michael Scott @ SWTW 2006

Tiered Analysis Strategy

Yield/DPPM Recipes

🗮 Test Advantage Express STDF Editor - Quality											
File Edit Help	File Edit Help										
Recipe Sections											
Recipe Sections Recipe Header System Variables Correlation Pulses	Recipe Header Recipe Revision Information Type STDF										
Constantion Rules	Name Quality Version 1.0 User mscott	,									
Fails UnkownType NotExecuted IfParametric PseudoConstantAll ClampedLeft ClampedRight Gategorical MissingLTL VeryHighCapability	Description Quality/DPPM Improvement Recipe - check for possible sources of quality escapes: 1. Alarms 2. Unknown test type 3. Tests not executed 4. Constant or pseudo-constant value, some or all sites 5. Clamped Distribution 6. Invalid or missing test limits 7. High signal-to-noise ratio 8. Categorical distribution, possibly indicating measurement resolution problem 9. Very high capability, possibly indicating test limits too wide Revision History										
	Thu May 18 13:48:4	2 MST 2006									

Yield/DPPM Recipes

Test Advantage Express STDF Ed	- Yield	
File Edit Help		
	N	
Recipe Sections	45	
 Recipe Sections Recipe Header System Variables Variables Correlation Rules Classification Rules Alarms Fails IfParametric LowCapability MultisiteVariation InvalidTestLimits LimitsCuttingDistribution 	tipe Header Ecipe Revision Information Type STDF Name Yield Version 1.0 User mscott Escription Yield Enhancement Recipe - check for pose 1. Alarms 2. Multisite variation 3. Low capability (values too close to limits 5. Invalid test limits 6. Limits cutting distribution In corresponding Historical Analysis recipe single STDF file	sible causes of yield impact: ;) , check for STDF-STDF variation, similarly to multisite variation within a
		Thu May 18 13:50:04 MST 2006

Highly Efficient DPPM Improvement Programs Depend on Pre-production and Post-probe Data Analysis

Hidden Data Opportunities for Improved Outlier Detection Coverage !

Improving Outlier Detection Coverage

- Tests with high outlier density
- Categorical low measurement resolution tests
- Correlated tests that have a directly relatable performance attribute may be considered for Regression Outlier analysis
- Corrective actions must be implemented for engineer-specified Crucial Parametric tests

Identify Tests with High Outlier Density

Test Index	Test Number	Test Name	Туре	Recommendation	Information	Executed	Fails	Unique Count	UTL	LTL	Alarms	Inliers
15	15	Test_00015	Р	HighOutlierDensity		665	0	62	-0.2500	-0.9000	0	623
51	51	Test_00051	P	HighOutlierDensity		659	0	228	1.000	0.07000	0	586
91	91	Test_00091	P	HighOutlierDensity		653	0	52	1.000e-05	-1.000e-05	0	601
100	100	Test_00100	Р	HighOutlierDensity		653	0	386	2.000	0.3000	0	608
101	101	Test_00101	Ρ	HighOutlierDensity		653	0	348	2.700	0.3000	0	609

06/14/06

Michael Scott @ SWTW 2006

Regression Outliers

TestNumber	TestName	RuleType	RuleIndex	RuleName	RuleExpression	RuleValue	CORR_THRESHOLD	CorrTests
20	Test_00020	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[26.0, 32.0]
23	Test_00023	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[25.0]
25	Test_00025	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[23.0]
26	Test_00026	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[20.0, 32.0]
29	Test_00029	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[31.0]
31	Test_00031	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[29.0]
32	Test_00032	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[20.0, 26.0]
35	Test_00035	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 54.0, 65.0, 129.0,
37	Test_00037	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[38.0]
38	Test_00038	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[37.0]
40	Test_00040	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[35.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 54.0, 65.0, 129.0,
41	Test_00041	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[35.0, 40.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 54.0, 65.0, 129.0,
42	Test_00042	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[35.0, 40.0, 41.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 54.0, 65.0, 129.0,
43	Test_00043	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[35.0, 40.0, 41.0, 42.0, 44.0, 45.0, 46.0, 47.0, 48.0, 54.0, 65.0, 129.0,
44	Test_00044	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[35.0, 40.0, 41.0, 42.0, 43.0, 45.0, 46.0, 47.0, 48.0, 54.0, 65.0, 129.0,
45	Test_00045	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[35.0, 40.0, 41.0, 42.0, 43.0, 44.0, 46.0, 47.0, 48.0, 54.0, 65.0, 129.0,
46	Test_00046	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[35.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 47.0, 48.0, 54.0, 65.0, 129.0,
47	Test_00047	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[35.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 48.0, 54.0, 65.0, 129.0,
48	Test_00048	MAIN	1	Correlated	IsCorrelated	TRUE	0.87500	[35.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 54.0, 65.0, 129.0,

- Can utilize high correlation factors to identify inter-dependent tests
- Outlier devices do not conform to the underlying relationship, but may still be within main distribution for both tests
- Computationally intensive need to identify candidate tests up front

06/14/06

Michael Scott @ SWTW 2006

Regression Outliers

Recommendations

Highly Efficient DPPM Improvement Programs Depend on Pre-production and Post-probe Data Analysis

Outlier Detection is a Key Component of Robust Electronic Devices Processing

Elements for Comprehensive Outlier Detection

- Automatic processing of ALL data distribution types
- Automatic application of outlier detection algorithms on a per wafer per test basis
- Operates on ALL parametric tests automatically
- Comprehension of Test Limits and asymmetrical data distributions in determining control limit locations
- Advanced Spatial Outlier Detection
- Ease of setup with revision controlled Recipes

Geographic Analysis Requirements

Comprehend test fail bins and parametric analysis bin results per *Electrical Wafer Sort Flow*

Flexible recipe defined Spatial Analysis

- Detection of repeating patterns
- Good die in Bad neighborhood
- Cluster Detection

Proximity Analysis Based on a Specified Bin number or numbers

- Wafer edge weighting
- Corner weighting
- Guard banding
- Smoothing

Composite Lot Analysis

 Superimpose lot level wafer maps and perform analysis per X/Y coordinate based on user defined defect density.

Multi-Flow Analysis & Support

06/14/06

Highly Efficient DPPM Improvement Programs Depend on Pre-production and Post-probe Data Analysis

> Summary and Results Key Elements for Success

Closed-Loop Framework

Streetwise[™] & Express[™] Processes

Accurate Post-Probe Outlier Detection

Wafer id	Parts	Passed	Failed	Critical Outlier	Orig Yield	New Yield	Delta
2	256	199	57	2	77.73%	76.95%	-0.78%
3	294	259	35	0	88.10%	88.10%	0.00%
4	291	245	46	1	84.19%	83.85%	-0.34%
5	285	238	47	1	83.51%	83.16%	-0.35%
6	287	246	41	3	85.71%	84.67%	-1.05%
7	292	253	39	0	86.64%	86.64%	0.00%
8	293	250	43	1	85.32%	84.98%	-0.34%
9	301	264	37	0	87.71%	87.71%	0.00%
10	277	238	39	1	85.92%	85.56%	-0.36%
11	275	237	38	1	86.18%	85.82%	-0.36%
12	280	247	33	2	88.21%	87.50%	-0.71%
13	291	260	31	1	89.35%	89.00%	-0.34%
14	294	264	30	0	89.80%	89.80%	0.00%
15	280	247	33	1	88.21%	87.86%	-0.36%
16	290	249	41	0	85.86%	85.86%	0.00%
17	290	258	32	1	88.97%	88.62%	-0.34%
18	294	258	36	0	87.76%	87.76%	0.00%
19	284	245	39	0	86.27%	86.27%	0.00%
20	290	252	38	2	86.90%	86.21%	-0.69%
21	283	256	27	0	90.46%	90.46%	0.00%
22	284	240	44	2	84.51%	83.80%	-0.70%
23	291	243	48	3	83.51%	82.47%	-1.03%
24	299	259	40	1	86.62%	86.29%	-0.33%
25	274	225	49	1	82.12%	81.75%	-0.36%

Average Yield Loss (-0.35%

Highly Efficient DPPM Reduction with Minimum Yield Loss

Typical yield impact -0.35%

Toward Zero Defect Production

- Automated Data Analysis for Optimized Test program Development
 - Reduced Time to Market
 - Maximum Test Data Quality
 - Enhanced Outlier Detection Coverage
 - Continuous Production Efficiency Improvement
- Accurate and Efficient Outlier Detection Methodology
 - Adaptive Per Wafer Per Test Analysis
 - Parametric Outlier Device Classification
 - Advanced Flexible Geographic Analysis
 - Complete, Fully Integrated Automatic Production Solution

Automated Closed Loop Process Optimization